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ARE YOU READY?

Your first question (after you have decided you are

one of the people described by the title of this book)

probably will be: Am I ready for this encounter with

calculus?

To help you answer this question for yourself, here

are a few of the assumptLas the author had to make concern-

ing the state of your mathematical knowledge to guide him

in writing:

1. That you have a working knowledge of basic arithmetic.

2. That you have completed a course in basic algebra.

3. That you are famil...ar with the general procedures

for plotting curves on a rectangular coordinate

system (this you should have learned from algebra.)

4. That in addition to the above you also are familiar

with the following concepts from trigonometry:

the sine, cosine, tangent and secant functions;

the slope of a curve (or gradient) at a point, as

represented by the tangent; and various ways of

indicating the relationships between variables,

such as f(x), etc.

Entry into a college course in calculus normally will

require that you have had a regular course in trigonometry

and, preferably, a course in plane analytic geometry as well --

unless you take the latter course concurrently with you

calculus course.



To help you further in making a decision as to your

readiness you will find below a brief preliminary quiz

covering some of the items referred to above. When you

have completed this quiz, check your answers against those

given. If you find there are some things you thought you

knew but didn't, be sure to look these up in a good text-

book before starting.

That way you will be sure you are ready.

Now turn to the next page for the Preliminary Quiz.
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Preliminary Quiz

1. A constant is a quantity whose value is

(word describing the nature

of a constant).

2. A variable is a quantity that (a, b or 0). (a) keeps
changing

(b) can assume an
indefinite
number of valu,
ues in the
same problem

(c) has only one
value for any
given problem

3. A fupction is a relationship between two variable:
constants
ratios

4. A variable whose value depends upon the value

of another variable is known as a(n)

variable.

5. An independent variable determines the value

of the related variable.

true

false

6. The symbol < means

7. The symbol> means

8. The symbol?. means

9. The symbol means

10. A secant line is a line that cuts a curve in true

falsetwo points.

11. A tangent line is a straight line that



12. The tangent represents the slope, of a line, true

or of a curve at a particular point. false

13. In trigonometry, the tangent function is the

ratio of the side opposite an angle(in a

right triangle) to the side.

14. The expression f(x) means .
15. Cartesian coordinates are rectangular

coordinates.

16. A polynomial is an algebraic expression that

has only positive whole numbers for the ex-

ponents of the variables.

17. Coefficient is the name given to a factor

(or group of factors) of a product to de-

scribe its relation to the remaining factors.

18. The number 3 in the expression n3 is called

the ,

19. In the expression (3,2), representing the

coordinates of a points, what does the number

2 stand for?

20. The curve known as the parabola is an expo- true

nential curve. (Although it wouldn't hurt false

you tu look this up if you don't know the

answer, you needn't be too concerned as we

will explain it in the text.)

true

false

true

false

true

false

Turn to the next page to check your answers.
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Answers to Preliminary Quiz

1. fixed

2. b; can assume an indefinite number of values

in the same problem.

3. variables

4. dependent

5. true

6. less than

7. greater than

8. greater than or equal to

9. approximately equa to

10. true

11. is perpendicular to a radius at the point where

it touches a circle

12. true

13. adjacent

14. function of x

15. true

16. true

17. true

18. exponent

19. the value of y, the ordinate

20. true; because the general equation for the parabola

is y2 = 4px. Unless you have studied plane analyti-

cal geometry you probably didn't know this. So don"k,

count it off if you got it wrong.

ix



INTRODUCTION

First let me set your mind at ease.

This is not a textbook. :;:t contains few of the

proofs so dear to the heart of the professional mathematician.

And it is a long way from being even a first course in calcu-

lus. On the contrary, it is purposely brief. Like the cross-

hairs in the telescopic sight of a target rifle, locked on

the bullseye, it is aimed at just one thing: Helping you to

understand the basic concepts upon which calculus is

founded. Nothing more.

You will be given explanations (hopefully the kind that

exp?ain), examples and, in appropriate places, a few problems

to work -- just enough so that you yourself are satisfied

you understand the points being discussed.

The purpose of this book is, very simply, to give you a

running start on the subject, prevent you from getting left

behind in your regular (school) calculus course, and to keep

you from taking a fatal wrong step at the beginning because

you have misunderstood -- or not understood -- some important

concept. (This usually turns out to be the concept of a

limit.)

So relax and enjoy it! No one will be breathing down your

neck (at least not in this course). We will proceed at a

leisurely pace, taking one small step at a time. Hope-

fully you will be reading this book before starting your

college calculus course. But if not before, then at least



as early as possible during the course, as a supplement to

your required text.

At the conclusion of the chapters dealing with differ-

ential calculus, andagain after the chapters on integral

calculus, you will find short, self-administered quizzes.

Their only purpose is to enable you to check up on yourself

and see how well you have done. The results should improve

ypur morale and help remove some of the trepidation that

normally accompanies one's first dip into the sea of calculus.

NOTE

Much of this book has been put to-
ether differently from most books you

have read. On many pages you will be
asked a question or asked to supply an
answer. When this happens, turn to the
page indicated to check your answer and
to continue.

Because not all of the pages are
intended to be read consecutively, it
would be helpful to use a bookmark to
help you to keep your place.

liow turn to page 1, please, and we'll get started.
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CHAPTER 1: WHY CALCULUS?

This is a question you deserve to have answered at the

outset.

If you have decided to study the subject then presumably

you have some reason for doing so. Is it because it is a re-

quired course for some branch of engineering? Psychology?

Chemistry? Physics? Economics? Advanced basket weaving?

If so there is nothing wrong with that as a reason, except

that it would be helpful to know why it is a required course.

Are you studying calculus because you plan a career in

mathematics? If so, then I am sure you will need little con-

vincing as to the importance of acquainting yourself with this

powerful mathematical tool, Doubtless you will have discovered

Already that calculus is, purely and simply, the starting

point of all advanced mathematics, Without it you are stopped

before you start. Without a working knowledge of arithmetic

you would not get far with algebra. Without a working know-

ledge of algebra you will not get far with calculus. And

without calculus you would not get far with any aspect of

mathematics beyond the elementary.

Why is this so? Because'calculus enables the solution

of problems that cannot be solved in any other way. And

even problems that can be solved in other ways often can be

solved faster, more accurately, or both with the aid of

calculus,
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For example. How woule, you go about finding the speed,

at any exact instant of time, of a baseball thrown up intothe

air or dropped from a tall bAlding? Remember, it will be

acted upon by gravity all the time it is in the air. Gravity

will constantly be trying to pull the ball back to the earth's

surface. The effect on a ball thrown up into the air will be

to slow its passage upward and to accelerate its return to

earth. Thus its speed will be changing constantly under the

attractive force of gravity.

It would be possible, of course, to estimate the ball's

actual speed at any particular moment by calculating its average

speed during a very short period just before and just after

the selected moment. (We will do this a little later on so

that you can see the method.) But this would yield only an

approximation of the ball's instantaneous speed, that is, its

speed at any specified instant of time.

The fact of the matter is that before the advent of

calculus there was no way to compute instantaneous opeeds

of this nature either quickly nor accurately. Mathematicians

simply didn't know how to do it; they did not have the necessary

mathematical tools. And this was most frustrating to them

because around the beginning of the 17th century (as you will

learn from Chapter 8) ;he natural scientists of that day were

studying the movement of pendulums, the planets, and all

kinds of moving objects quite intensively. The fact that many

such objects moved at varying speeds gave rise to the ques-

tion from which calculus was born, namely: "What is speed?"
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The question of speed is, then, the fundamental one

of calculus. But this does not mean that the use of cal-

culus is confined solely to the study of falling objects.

the movement of planets or purely meohanical matters.

Another name for speed is rate of chanve, and the ques-

tion of how to determine rates of change occurs in many

different situations. Thus, we find calculus applied to

all aspects of physics -- heat, light, sound, magnetism,

electricity, gravitation, the flow of water. Calculus

enabled James Clerk Maxwell to predict radio twenty years

before any physicist could deminstrate radio experimentally.

Einstein's theory of 1916 and the atomic theories of the

nineteen-twenties relied heavily upon calculus.

In addition to these applied aspects of calculus it

also stimulated the development of several new branches of

pure mathematics. In fact, fog branches of mathematics

have appeared in this century that do not use calculus.

Anyone attempting to study these subjects without a back-

ground in calculus would be lost. Problems that can be

handled relatively simply with the aid of calculus be-

come enormously difficult to solve -- if indeed they can

be solved -- without it.

In addition to making it possible to handle dynamic

problems, such as the relationship between time, speed

and distance, the development of calculus also turned

out to supply a method for analyzing curves. The subject

of curves may seem a bit remote from that of speed. How-
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ever, interestingly enough, the problem of finding

the rate of change of direction of a curve at a given

point (which is, of course, measured by the rate of change

of the sloe of the curve at the point) is closely related

to the physical problem of finding the instantaneous

speed of a moving body. We will look into this matter a

little later on in the book.

Now although calculus grew from a fairly simple idea,

the idea of speed, there is a general impression that it

is a difficult and complex subject. And so it is or

can be. Its difficulty and complexity depend upon how far

into the subject one attempts to go without proper prepar-

ation. The fundamental concepts are quite simple, and

these are all we will attempt to cover in this short treat-

ment of the subject. But there is practically no limit

to how far into it one can go or how many applications

and new fields for exploration one can find by studying

it. The housewife who finds an electric egg-beater easy

to operate might experience some difficulty solving the

mechanical and electrical problems involved in designing

it.

Similarly, most people can, with a little effort,

learn how to apply calculus successfully in solving many

kinds of practical problems. However, few would find it

easy to devise new applications or to apply it in the

more abstract and theoretical aspects of advanced mathe-

matics.

How much of calculus should we, then, attempt to

cover in an introductory book?



I believe the answer is: (1) only what the reader

needs to know in order to be able to use the proccesses

of differentiation and integration where appropriate;

(2) enough so that he can recognize at least some situa-

tions where its use is appropriate; and (3) sufficient

theory (that is, familiarization with the concepts upon

which calculus is based) to assist his passage through

a formal (college) course.

Obviously this is the kind of compromise that will

please no one except, hopefully you -- the learner. But

then this book was written for you, so we need not con-

cern ourselves with any alarmed denouncements by the

professional mathematicians. Dissatisfaction or failure

to learn on your part is, however, another matter. That

we are very much concerned about.

Chapter 8, to which we already have referred, con-

,ins a brief historical review of the development of

mathematics and of the kinds of problems that early

mathematicians found it difficult or impossible to solve

until the advent of calculus. It has purposely placed

at the rear of the book so that you may read or not,

depending upon the extent of your interest in Aow calculus

came to be.

lieus now proceed to Chapter 2 where we will begin

our investigation into the rudimental aspects of calculus,

working our way slowly, step by step, from the presently

known to the presently unknown.



CHAPTn 2: SO WHAT'S NEU ABOTTT LIMITS?

Let's begin with what you already know about limits.

Did you ever feel you were reaching the "limit of your

patience?" This thought is based on the notion (which we

won't debate now) that each of us has only a fixed supply

of patience and that circumstances can make one feel he has

just about used up his supply. A mathematical way of saying

this would be to say that our reserve (remaining amount)

of patience is approaching zero as a limit. And using

standard mathematical symbols we could express this situation

symbolically as: Patience (In case you have for-

gotten, the arrow means "approaches.")

. Similarly, when we speak of reaching the "limit of our

endurance" we really are referring to the fact that our

supply of energy is fast approaching zero as a limit.

Thus: Endurance O.

Many of us have been faced with the dilemma of having

the amount of gasoline remaining in our gas tank "approach

zero" at an inopportune moment. We also know about military

limits (being "off limits"), speed limits, the ground being

the limit for a falling ball, etc.

These examples all have something in common. Can you

tell what it is? Try putting it into words) then chock

your answer with the one given.

Turn to page 8 to check your answer.
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ans. The concept of the distance from some fixed
position, or of a quantity, approaching zero
as a limit.

The foregoing examples are fine for developing an

intuitive notion of limits. But in order to be able to une

this concept to help solve the kinds of problems that con-

cerned Newton, Leibnitz and most of the other early mathema-

ticians back to the days of the Greeks, we will need to ex-

amine it more closely.

Notice that, for the most part, we tend to think in

terms of the portion of the original amount remaining, rather

than in terms of how near that remainder is to zero. Thus, we

are more concerned with the amount of patience used up rather

than with how much remains; how fast we are travelling rather

than how much our speed differs from the speed limit; the

amount of gas left in the tank rather than how close this amount

is to zero. It is a subtle attitude of mind or way of think-

ing that we need to become aware of in our discussion of limits.

The difference between our intuitive, concept of limits

and the mathematical concept lies in this important fact:

In mathematics we are nrinarOy interested in the difference

between so -^e amount and the limit zero.

Consider this idea with relation to a specific speed

limit such as 35 mph. Usually we would say that as our car

speed increases, it approaches 35 mph as a limit. How could

you express this situation in terms of the difference between

your speed and 35 mph?

Check your answer on page 10.



from paga 10

ans. as $ c---).35 Ds

..9-

BEST COPY AVAILABLE

In the answer given above Sc was used to represent

the speed of the car as it approached 35 mph and Ds stood

for the difference between the speed of the car and the speed

limit of 35 mph (other symbols would serve as well).

No doubt you could think of many other examples, but

even these few are sufficient to allow us to arrive at some

kind of a general statement about such situations.

We might, for example, say something like this:. As the

value of any quantity approaches some limit, the difference

between the value and its limit approaches zero. Symbolically

expressed it would look something like this:

as V ---*L1

V stands for the value of the quantity (whatever its

nature -- gallons, miles per hour, inches, oranges, light

years), L stands for the limit the value is approaching,

and V 'Nil, represents the amount by which the value differs.

from its limit at any given moment.

Now suppose you were climbing a mountain and your ob

jective was to reach a height of 5000 feet above sea level.

If we let h represent your height above sea level and L

represent your altitude goal, how would you interpret in

words the following symbolical representation -- or

mathematical model -- of this situation?

h---1L, 0

Turn to page 11.
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BEST COPY AVAILABlt

ans. As your speed increases, the difference between
your speed and 35 mph approaches zero as a limit.

-10-

Do you see the difference?

As we commonly use the word "limit" we are chiefly

interested in the marmitiOn or size of a quantity as it gets

nearer and nearer to some limit. In mathematics we are more

interested in the difference in or distance between the quan-

tity and its limit.

Relating these two notions we can say that as a quantity

approaches a limit, the difference between the quantity and its

limit annroaches zero as a limit.

In order to get used to seeing what this kind of re-

lationship looks like in mathematical shorthand, let's try

expressing it symbolically. Take the case of the filling gas

tank. As the quantity of gasoline in the tank approaches 16

gallons (the tank's capacity), the space remaining in the tank

approaches zero. We can express this as follows:

as Q,---10.16,

where Qu represents the quantity of gas (in gallons) and Sr

represents the space remaining. Obviously all we have done is

to use the little arrows to mean "approaches" and invented a

few letter symbol to represent the values involved. Not very

technical and certainly not very formal mathematics, but it

says what we want it to say and that's the only purpose of

any mathematical symbol.

Tow suppose 7011 make up some symbols of your own and try

representinp; the situation where your car speed is approachinm!

the posted speed limits of 35 mph. When you have somothin that

looks rir!ht to you, check it arrainst the symbolv,y shom on

raze 9.
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ans. .lo your heijit above sea level approaches the , :cal
(limit), the differerce between your height and
your goal (limit) approaches zero.

Your interpretation should have been generally similar

to that shown above. We could, of course, have used 5000

(feet) in place of the symbol L (for limit) since we happen to

know the numerical value of the limit in this instance, in

which case we would write

h-->-50001 (h 5000)-0,-0.

If you are saying to yourself that these examples are

absurdly simple, you are quite right. However, I urge you to

remember this with gratitude when we get to some that are not

quite so obvious.

Now it's time to ajyraz the notion of limits to a practi-

cal problem in order to discover whether or not it really helps

solve (or makes nossible the solution of) the problem. We are

going to approach it in a slow, relaxed way so don't panic.

The problem we -ill consider actually is the basic one

that prodded Sir Isaac Newton into developing his method of

Hfluxionso which, as mentioned earlier, later became known as

Calculus (or, more elegantly, the Calculus). Simply stated,

what puzzled Newton (among many other things, no doubt) was

how to determine the instantaneous velocity of a freely falling

body -- discounting the resistance of the air through which

it was passing.

Sound simple?

Turn to page 12 and let's see.



A ball thrown into the air is an example of a body

under the influence of gravity, so let us suppose we throw

a baseball straight up. What happens to it?

We know from experience that (depending upon how hard

we throw it) the ball will go up for a certain distance, then

fall down to the ground, from which it started. Since the

effect of gravity is to "pull" objects down, it is perfectly

evident that while the ball is moving upward the effect of

gravity will be to reduce its speed continuously until it

finally reaches some maximum height, changes direction, and

begins its return trip to earth. On the way down gravity

will cause it to speed up as it approaches the gound. In

other words, our own experience tells us that the ball we

throw upward is going to be chanr,in velocity* all the time

it is in the air! Our job will be to determine its speed*

at any given instant, that is, its instantaneous speed. To

do so we will use the concept of "approaching a limit" which

we have been discussing.

Where do we start?

It is not too difficult to determine the ball's heirrht

above the ground at any instant (assuming one knows the initial

conditions). Physicists have done it with great accuracy and

derived an equation that represents the height of the ball

with time.

Suppose, therefore, we are given the information that

the expression h = 128t 16t2 is the relation between

er"--""---"Thsa.r.triematiciai=t7.176.ke a distinction between the
terms "steed" and "velocity," however for our purposes we
will consider them synonymous.
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h (height) and t (time in seconds) for as long as the ball

is in the air. Let's see how this equation will help us

learn something about the velocity of the ball.

Here is the equation again: h = 128t - 16t2

Since h and t are related variables let us assign a

. series of values to t, as the independent variable, and

see what values we get for h. As shown in the table below

we find that as t increases in value from zero to 4 seconds,

h increases also. However, once we get beyond 4 seconds,

for successive values of t we find that h decreases, until

finally, at t = 8 seconds, h becomes zero.

Plotting this we get the curve shown below.

rD-

7 - . ....... .
-; 7

What was the ball's averaae velocity during the first

0 0
1 112
2 192
3 240
4 256
5 240
6 192
7 112
8 0

four seconds?

Turn to pace 14 to check your answer.



Crow

26
ans. = 64 feet per second

4
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Remember: Avera-e velocity is always found by dividing

the change in position of a body (that is, the distance moved)

during some period of time, by the elapsed time. And since

the ball we threw up into the air traveled a distance (height)

of 256 feet in four seconds, its average velocity was 256

divided by 4, or 64 feet per second (fps).

Notice, however, that its actual speed changed during

those four seconds. Durinf, the first second it traveled 112

feet, hence its average speed between zero and one second was

112 feet per second. During the next second the ball traveled

a distance of 80 feet (192 minus 112), hence its average speed

durin,. that second was only 80 feet per second. Similarly, its

average speed between the second and third seconds was 48 feet

per second, and between the third and fourth seconds only 16

feet per second. Obviously it was slowing down in a hurry.

Now this is all very interesting as it relates to how

a ball changes velocity under the influence of gravity. How-

ever, it doesn't answer our original question, namely: How

do we determine the ball's exact speed at any :riven instant,

as distinguished from its average speed?

Let us suppose, for example, we wish to know the ball's

instantaneous velocity when t = 2 seconds. How would we go

about finding it? Give it some thought and then check your

answer against the one given on page 16.
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ans. h = 128t - 16t2

-15-

Very well. Using this equation (h = 128t 16t2)

allows us to calculate the following values for h for the

selected values of t:

at t = 1.99 seconds, h = 191.3584 feet

at t = 2.00 seconds, h = 192.0000 feet

at t = 2.01 seconds, h = .192.6834 feet

Therefore, during the one-hundredth of a second before

t = 2, the ball traveled 192.0000 - 191.3584 or 0.6416 feet,

and this distance divided by one-hundredth of a second gives

us an average speed of 64.16 feet per second. Similarly,

during the hundredth of a vecond after t = 2, the ball traveled

192.6834 - 192.0000 or 0.6384 feet, which is e'uivalent to

63.84 feet per second,

Adding the before and after speeds (64.16 + 63.84) and

dividing the sum by 2 we arrive at a "guesstimate" of 64 feet

per eecond as the ball's instantaneous velocity at t = 2. In

other words, the ball's speed at the instant t = 2 an- ears to

be approaching 64 feet per second as a limit!

In order to help you see this a bit more clearly we

have drawn a graph of the situation, shown on page 17.

Turn to page 17.



from page 14

ans. We can do it by calculating averan.e velocities
over shorter and shorter peinTinmr time, both
before and after t = 2.

I hope your answer (if you were able to come up with

one) was something like the one given above because this is

a very important point. Let's consider it for a moment.

Remember: We don't as yet have any direct way of calcu-

lating the instantaneous velocity of the ball at a given point

in time, such as t = 2 seconds. So far, the only way we know

to figure its speed is to compute its average speed during

some period of time very close to t = 2 seconds. The closest

to t = 2 would be some very small fraction of a second ar...t

before or =LA= t = 2 seconds.

Now since we know that its actual velocity is changing

constantly (remember that the ball is constantly accelerating

or decelerating under the force of gravity), its average speed

just before and just after t = 2 will be different, however

slight that difference. But if we take a time interval suffi-

ciently small -- say, one-hundredth of a second -- before and

after t = 2 to calculate its average speed, it seems reasonable

to assume that the ball's instantaneous speed at t = 2 should

be about midway between these two values.

To perform these calculations we will need our equation

giving the change in altitude (distance) with time. Do you

recall what that equation is? See if you can write it down

in the space provided below:

Turn to page 15.
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Plotting the two values of h for t = 1.99 and t = 2.01

and connecting these with a straight line we get the time-

altitide graph shown above.

It is again apparent that the velocity of the ball

'uot beefore t = 2 was slightly rer:.ter than 64 fps, and

'list after t = 2 it was slightly less than 64 fps, which

tends to confirm our suspicions that at t = 2 its speed

was very close to 64 fps.
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Now, did we just do somethini; we said couldn't be done

withnut calculus? Did we, that is, find the instantaneous

velocity of the ball by algebraic methods? The answer is

No to both questions, Why?

First, although we did find its velocity :lust before

and 'ust after the selected instant of time t = 2 seconds,

we did not find it for the exact instant t = 21 True, it

,.nn that its speed at t = 2 is approaching 64 fps as a

limit (that is, not more nor less than 64 fps), but this is

not proof. It is an assumption on our part. And even if we

took smaller and smaller intervals of time b.'th before and

after t = 2 in which to calculoA,o the ball's average velocity,

it still would be just that -- an averale velocity* taken over

a period of time, however short -. and not an instantaneous

velocity.

And second, if we were willing to be convent with

assumptions of this kind, it certainly is a long, hard way

to find even an approximate answer.

Both Newton and Leibnitz, plagued by this and similar

!problems, felt there had to be a better way. And thanks

to their persistence and brilliant thinking they found that

way.

So limber up vour thinking, pay close attention, and

we'll retrace the line of reasoning they went throvgh (each

in his own way, actually, and independently of one another)

*Just a reminder of our definition on page 14 of average
velocity as the distance traveled between two points
in time, divided by the time interval.



in discovering a beautifully simple way to find such things

r instantaneous rate-change values. We will find out how

they learned to apply, in a precise way, the method of limits

which we were able only to approximate (and that laboriously)

in the foregoing example.
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CHAPTER 3: AN EASIER WAY TO SOLVE RATE PROBLEMS

We are going to examine, step by step, the relationship

between two variables as one changes with respect to the

other -- and particularly the rate of this change. For

this purpose we will graph the situation; this will help

us visualize it better and also aid in considering it

algebraically.

We could use as an example the relationship h = 128t - 16t2,

the change of height with time of the ball thrown in the air,

discussed in the last chapter. Here we were concerned with

the two variables h and t, where h was expressed as a function

of t, the independent variable. We found, as you will recall,

that because the ball's height did not change uniformly with

time, its velocity was not constant. Hence the task of finding

its velocity at any given instant was not an easy one. We will

return to this problem a little later on. But for our present

discussion we will use the even simpler relationship between

two variables, y = x2 .

Do you remember from algebra what we call this kind

of a function? If so, write it in the space provided below.

Turn to page 22 to check your answer.

..m.11
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ans. A power function, or square function.

Yes; it is usually termed a "power function"

for the obvious reason that the independent variable (x)

appears at a higher power than one. If you have studied

any plane analytical geometry you may also recognize y = x2

as the equation for the curve known as a !araboa.

Using the values for x shown in the
ly Ix

0table at the right, find the corresponding

values for y and plot the resulting curve

on the coordinate system provided below.

Then check your results with those shown

on page 24.

J
.

1

2

3
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ans. T = tangent to curve at point P = = slope

of tangent line T.

-23-

Thus we have found that it is convenient to represent

the slope of the curve at the point P by means of a line, T,

tangent to the curve at that point.

Now to assist us in our analysis let's add another,

random point on the curve at some indeterminate distance

from P. This point we will designate as Q.

Connecting this point to P by a straight line gives us

the secant line, S. Observe this in the figure below.

(Note: In case you have for-

gotten, a secant may be defined

as a straight line that cuts a

curve at two points.)

How should we designate the coordinates of the point P,

bearing in mind that P is point t on the curve?

.2urn to pace 25.
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ans.

S
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1,

e 0
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Note from your curve that, just as the velocity of the

ball thrown into the air was constantly changing, so the direction

of the curve is constantly changing, reflecting the rate at

which one variable is changing with respect to the other. So

if we can find some way to determine the instantaneous rate of

change of direction at any point on the curve, we should be able

to use the same general approach to find the instantaneous rate

of change in the velocity of the ball. Why? Because althoufrh

the variables are different in each case and the physical situa-

tions th ey symbolize are different mathematically the two

tions involved are essentiallz similar in nature!

But how do we find the direction of the curve?

Well, the direction of A curve at any point is, as you

may recall, simply the slope of the curve at that point. There-

fore, what we really are seeking is the slope, or angle of

inclination, between the (positive direction of) the x-axis and

a line tangent to the curve at the given point.

In the sketch below, identify the line T and give the

ratio that represents the slope of T.

P ?OiNT ON CURVE'
5 T

? = SLOPS or".%
C.

Turn to pade 23 to check your answers.
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ans. It probably would be best to designate the
coordinates of P as (x,y) in order to
illustrate the general nature of this point.

,Jr

We also need to indicate the position of the point Q

with relation to P. And since Q is a bit further from the

x-axis and y-axis than P, we designate the horizontal distance

from Q from P as Ax (delta x, that is, a little bit of x), and

the vertical distance as Ay (delta yl that is, a little bit

of y).

With this information added our graph now looks like

this:

X ii-Ats,x

Coordinates of P are: (x,y)

Coordinates of Q are:

(x + Ax), (Y + 6Y)

Try writing the equation for the slope of the secant

line S, keeping in mind thatiit will simply be the ratio of

the vertical distance to the horizontal distance between the

points P and Q.

Turn to page 26.
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ans. Slope of S =
BEST COPY AVAIL/BE

Slope of S =

It may appear as though we had only succeeded in

accumulating an odd assortment of letters. However, don't

be alarmed. They are all necessary and will be of great

help shortly. You will note also that we have shaded in

the triangle of which the secant line S is the hypotenuse.

This was done to help focus your attention on it.

Now, remembering that the equation for our curve is

y = x2 substitute the coordinates of the point Q for x and

y in this equation and see what kind of an expression you

set.

T.urn to page 28 to check your answer.



ans. (x+11x)
2

= x2 +
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applies to the
the x).
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2x.Ax + ---2
(tLa

the Ax means that
entire expression,

little bar, or
the exponent
not just to

27-

What we are seeking by this algebraic procedure ia a

relationship between Ax and Ay. Specifically, what we would

..ike to find is the ratio of ay to Ax (that is, the slope

of the secant line S) based on what we know about the equation

for the curve. Once we find this, you will see how we plan

to use it.

So, from the previous page we now have this information:

y = X2 (1)

and y + Ay = x2 + 2x. ax + ax2 . (2)

But since from (1) we know the value of y in terms of

x, we can substitute x2 for y in equation (2) and get:

Turn to page 29.
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ans. You should get (y = (x + Ax)2

Once more.

The equation for the curve is y = x2 .

The coordinates of the point are:

x coordinate = x + Ax,

y coordinate = y + LS5r.

Substituting these coordinates in the equation of the

curve gives us

(Y + AY) L= + Ax)2

Your next step will be to expand the binominal (x + Ax)2.

Do so, and write your answer in the space below.

(x Lsx)2 x2+

Turn to page 27 to check your answer.
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ans. x2 + Dy = x2 + 2x. 6,x + ax2

or, subtracting x2 from both sides,

ay = 2xac + Ax2

Thus we now have:

-29-

py = 2x.41x +

And dividing each term on both sides of the equation by

6a gives us

01 = 2x + 6x

This looks a bit simpler, doesn't it?

But what does it represent?

See if you can complete the following sentence:

The quantity 2x + WC represents

Turn to page 30 to verify your answer.
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ans. the slope of the secant line s.

I hope you got it right!

Here it is again:

BEST COPY AVAILABLE

= - 2x + Ax = slope of the secant line S.
ax
Let's look at it once more in the graph below.

elo Al- 1111111

.Mw wow

AX
X 4-AX

-AY = 2x + Oxi
406:4

Think about the secant line S again for a moment. What

it really represents, in effect, is the average slope of the

curve between the two points P and Q, in much the same way

as the velocity value we found for the ball between any two

instants of time represented the average velocity of the ball.

But just as we were seeking; the instantaneous velocity there,

here we are seeking the exact slope of the curve at a specific

point -- not the average slope.

Continue on page 31.
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Slope of S

4LY = 2x +11x

Very well then. Since what we really want is the slope

of the curve y = x2 at the precise point P, let us imagine

the point Q to move slowly along the curve towards P. What

we now get is a series of secants (shown above as S
1'

S2,

S3, S4, etc.).

At the same time -- since they are associated with

(define, actually) the position of the point Q -- the dis-

tances py and ax grow shorter and shorter and our shaded

triangle diminishes in size.

Obviously Q is approaching a limit (sound familiar?),

namely, the point P.

What limit is the secant S approaching?

Turn to page 32 to check your answer.
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ans. The tangent line T.

BEST COPY AVAILABLE

Of course; the secant S is approaching the tangent line

T as a limit. By the time the point Q reaches point P, the

secant S (one end of which moves with Q) will coincide with

the tangent, T. Not only coincide with it; it will become the

tangent of the curve at the point P.

It is important that you see these two things very

clearly:

1. Q is approaching the point Pas a limit!

2. The horizontal distance, Ax, between Q and P, is

approaching zero as a limit.

How do you think the expression for the slope of the

secant, 0 = 2x + Ax, will change as A.X. approaches zero

as a limit?

Turn to page 34.
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To summarize, then:

1. As Q approaches P as a limit, and

2. Ax approaches zero as a limit, then

3. The secant tends to become IananI to, and therefore

the slope of, the curve at the point P!

Using the arrow (symbol for "approaches ") which we

used earlier, and the abbreviation ulim" for limit, we can

express symbolically what is happening like this:

lim
2xpx

Try putting this symbolical expression into words

just to make sure you understand its meaning.

Turn to page 35 to check your answer.
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ralo. Tho torn Ax will drop out of tho rif;ht-hand member
o1 the equation, leaving just the term 2x.

True. But if Ax, approaching zero, becomes so infinitely

small that is in effect drops out of the right-hand member of the

-adtequation
lim

= 2x + Lix, leaving just 2x, it seems reasonable

to ask, Why doesn't it also drop out of the expression on

the left-hand side?

The answer is: Because although Ax is approaching zero

as a limit, so is py. Hence (to oversimplify a matter that

involves the theorems of infinitesimals), the ratio Ox remains

intact.

Remember. AI
'
interpreted graphically, is approaching

the tangent to the curve at the point P. This is a specific

number of value! So while Ax is approaching zero, -gc is

approaching a real value, namely, the slope of the curve at tba

point P. Therefore the diminishing value of Llx has a different

effect on tha two sides of the equation.

Turn to page 33.
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ans. The limit of as Ax approaches zero

equals 2x,

Let's repeat the entire limit formula so we'll have it

in front of us:

lim ZdX = 2x,
ax-->0 464x

or, put into words, as Aix approaches z6ZO as a limit, the

limit of the ratio Ax LOC
in the expression -02 = 2x + Ax

becomes 2x.

Now, what have we really discovered from all this in-

vestizating that we didn't know when we started out -- and

that is useful? It is important that you know before going

on, so see if you can select the best answer below.

1. The secant becomes the tangent as AX approaches

zero as a limit.

2. As the interval Ax of the independent variable

approaches the limit zero, the ratio becomes
Llx

the instantaneous rate of change (or growth rate)

of the function y = x2 at the point P.

3. In the expression 2x + Ax, the term Ax drops

out as Ax approaches zero as a limit.

Turn to page 36 to check your answer.
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ans. No. 2.

Answers 1 and 3 both are correct statements, but

neither is the best answer nor the most significant thing

that occurs.

The really important piece of information is thatwe

have found an expression for the instantaneous rate of change

of the curve -- that is, of the function which the curve

represents -- at a specific point, or instant!

To understand the real significance of this realize

that if = -2 hannened to re resent the relationshi

between the heitht and time increments of the ball

thrown into the air then 2x would re resent the

instantaneous velocity (time rate of chance of the

ball at any given moment! Exactly what we were trying

to find!

In other words, we have essentially done what we set out

to do, namely, discovered a means of calculating instantaneous

rate of change, or growth rate, of a function at a given instant.

Just to prove, we've done it, we're going; to go back

to our equation for the thrown ball in a moment and use it

to obtain the instantaneous velocity of the ball. But first

.!lt's have a short review.
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The above picture should look quite familiar to you

by now. Here then are the steps we went through in finding

the derivative (derived function, or instantaneous rate of

change) of y with respect to x.

Given function (curve) y = x2

Coordinates of curve at Q

-37-
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(x +dx) and (y +Ay)

Substituting these values in
the given function we get Y + by = (x +4x)2

And expanding the right member : y +45y = x2 + 2xtx +5512

Substituting x2 for y (from our
original equation) we get

Subtracting x2 from both sides :

And dividing both sides by Ax :

Finally, taking the limit of the
function as Ax-÷0 (that is,
as the point Q approaches
point P on our graph) we get

x2 +4y = x2 + 2xAx +rx2

Ay = 2x.tix + ric2

- 2x +Ax4x

1 im

4x--->04x

tiveliof

for the

= 2x = the deriva-

y with respect to x

function y = x2, or

the instantaneous rate of

change of y with respect

to x.

Now turn to the next page where we will discuss a final

important concept about the limiting value of the function as

4),x O.
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The important concept we referred to on the preceding page

is this:

There is a special name for the limiting value of the

ratio 'IX as dx approaches the limit zero. That name isLx

"derivative" (did you notice where we used tt on page 37

without explanation?). It is written as 4Y and read

as "dee-wy, des.eks."

vIn other words (or symbols), a derivative =
d

=

lirn 2d is, then, the limit" value of the ratioAx--).(Dx° dx Ax

Another wax_of saving this is to say that is the

customar ex ression for the derivative of with

respect to x.

You have now been initiated into some of the mystical

language of calculus and can use the term "derivative" to

astound yoir friends.

Seriously, and more importantly, you have been exposed

to what is probably the most fundamental concept in differ-

ential calculus: The concept of the derivative of a function.

In the next chapter we are going to look at some of the

ways in which this concept is applied to functions of

various kinds.
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CHAPTER 4: SOME HANDY SHORTCUTS

Together we have worked our way through the "delta

process" of finding the derivative of a function -- not any

function, but the specific function y = x
2

.

We fouad, for example, that by this method of successive

approximation -- algebraically derived -- we arrived at an

expression for the instantaneous rate of change of one variable

(y) with respect to another variable (x).

Thus the limit of the rate of change of y with respect

to x in the expression y = x 2
was shown to be

iim dv
2x.Ax --0 Ax dx

If we were to write this in the form of an instruction

rather than a reault would you know what to do with it?

Let's find out.

Complete the following:

4i(y=x2)

Turn.to page 40 to check your answer.
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ans. 2x
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I hope you figured it out for yourself. Here it is:
z(y x2) =2x.

We read this as: The derivative of y with respect to x

in the expression y = x2 is 2x. Other symbols used to denote

dthe derivative of y with

and --f(x). f(x) means,dx

function) of x.

respect to

of course,

x are: y', f' (x),

the function (Ill

EY,

For example, in the expression y = x2 y is the function

of x. Hence we could write this as f(x) = x2 However, we

usually use y to represent the dependent variable since it is

helpful to graph many of these functions and using y with x pro-

vides the two coordinates necessary for plotting in our familiar

Cartesian coordinate system.

Now let's consider the matter of finding the derivative

of an expression strictly by algebraic means.

Look again at our original function, y = x2 and its

derivative, y' = 2x (using one of the new and convenient

notations for the derivative). How could we have manipulated

the term x2 mathematically, in order to turn it into 2x?

That is, what would we have had to do to it?

Turn to page 42 to check your answer.

10.111111
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ans. y' = 3x2

BEST COPY AVAILABLE

Did you get it right?

Let's do it together to make sure.

Following our empirical rule we multiply the coefficient

of x) by the exponent 3, at the same time subtracting 1 from

the exponent. This gives us

Y' = 3.1 x3-1 , or y' = 3x2

Expressed in a more general form our rule then would be

D-1 dn,
kx ) = nxn -1

Now suppose that x3 had had a greater coefficient than 1,

a coefficient such as 2, for example.

What would be the derivative of y = 2x3?

3,
"ami(21C ) = y' =

Turn to page 43 to check your answer.
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ans. Eultiplied the independent variable, x,
by its exponent, 2, and decreased the
exponent by one.

Yes, it's as simple as that: To "derive" the deriva-

tive of the function y = x2, we have merely to multiply

the x (actually, its coefficient, 1) by the exponent, 2,

and subtract 1 from the exponent.

Thus,

50(x2) = 2.1 x2-1, or = 2x

Let's try this procedure with a slightly different

function such as y = x3.

What is the derivative of y in this case?

y'

Check your answer ox. page 41.
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We have discussed what happens to the independent vari-

able, x, when we find the derivative. But suppost there were

a constant in the expression. What would ahppen to it?

For example, consider the function y = 2 + x3.

We now know that the derivative of x3 is 3x
2

. But what

about the derivative of a constant, such as the 2 in this

example?

The answer is that the derivative of a constant is zero,

hence the 2 would just drop out. Without delving into the

mathematical proof, the reason for this is that since a der-

ivative represents a rate of chane, and since a constant

doesn't change, it simply drops out as a meaningless compo-

nent of the derivative.

We express this symbolically as follows:

D-2

Find the derivative of y = 2x4 + 7.

y1 _

Turn to pace 44 to check your answer.
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What do you think would be the derivative of a func-

tion such as y = x2 + 2x + 1?

Herc, we have an expression in which x appears in the

first power as well as in a higher power. The procedure

is, however, the same one we have been using to find the

derivative of powers of x.

Here (from page 41) is the rule again:

d n
inr(x ) = nxn -1

With this rule in mind -- plus the rule regarding

the derivative of a constant -- find the derivative of

the expression y = x2 + 2x + 1.

Turn to page 46 to check your answer.
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In working the problems on pages 40, 41 and 42 we have

been doing something of which you may not be aware. Although

it follows logically from our prior discussion about finding

the derivative of some power of x, it is time we examined

it separately and recognized it as a rule in differentiating.

The rule is this: When there is a constant as a

multiplier the constant remains a multiplier in

the derivative.

Thus, if y = 4 x3 , then = 4.3x2 = 12x2 = the derivative.

Expressed symbolically this rule would appear as follows:

D -4 f dv-AE-cv) c c-13-c

Do you realize you are solving problems in differential

calculus? Perhaps not big ones, but finding the derivatives

of functions of any kind is the heart of differential cal-

culus.

Try this one just to prove to yourself you can do it:

That is the derivative of y = 3x3 + 2x2 + 4x - 7?

y,

Turn to pace 47 to check your answer.
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ans. y' = 2x
2-1 + 1.2x

1-1 + 0

= 2x 7 2
BEST COPT AVAILABLE

(,-

This last problem also brought out another interesting

point which I hope you inferred from your knowledge of

algebra. This is the fact that the derivative of a variable

with respect to itself is unity (one).

Thus, if y = x, then yT = 1. Why?

Pollowing our rule for finding the derivative of a

power of x (in this case the first power), y' (x) = 1.x
1

.

1-1.But accoraim.; to the rules r;overnin,7 exponents, x is the
1

same thinL: as =, , and since 2/AL quantity divided by itself

is unity, then it follows that x14-1 = 1.

Another, graphical, way of looking at this situation is

that if y = x, then dy = dx, and the growth rates are equal,

hence = = 1.
dx

So add this useful piece of information to your inereas-

inz repertoire of knowledge about derivatives. Pormally

stated, therefore, our formula is

D-3 d /xi, or
dx

-k =1.
ax

Continue on pace 45.
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ans. yl = 3.3x3-1 i.,

= 9x
2
+ 4x
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2.2x
2-1

+ 1.4x1-1 - 0

+4

Now, what have we in fact discovered through the use of

our empirically derived rules? This: We have found a simple,,

shortcut wav to determinin- the derivative or instantaneous

rate of change of a function!

To make sure you have these rules firmly in mind let's

review them again briefly before going on.

Rule

d

D-2 -*(c) =0

D-3 d _
CiX /"/

1

n-1
The derivative of x to the nth power is
equal to n times x to ,the n-minus-1 power.

ci dvD-4 -Er (cv) = c
dx

The derivative of a constant is zero.

The derivative of x (or of any variable)
with respect to itself is one (1).

The constant remains a multiplier in the
derivative.

To give yourself a little more confidence, try working

the following problems, using the rules above.

Differentiate (that is, find the derivatives of) the

followinz; functions with respect to x:

1. y = x6

2. y = 3x3

3. y = x2 + x

4. y = 7 + 7x2

5. y = 2x 4 + 2x5

6. y = 1 + 3x + x9

7. Y = 4x2 - 4

'8. y = 1

Turn to page 48 to check your answers,
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airs. 1. Gx- 2. 9x4 3. 2x + 1 4. 14x

5. 2 + 10x4 G. 3 + 9x8 7. Ox S. 0

Did you act them all right? Actually, although we didn't

treat it as such, successive differentiation of the terms of

a polynomial (such as problems 3 through 7 on page 47) is

generally considered to be governed by a separate rule. This

rule simply says (in a common sense sort of way) that to

differentiate a function that is made up of several terms

connected by plus or minus signs, just differentiate one

term after another in succession.

Written out symbolically the rule looks like this:

D-5

u, v, and w re!esentinz the various terms.

Now let's see if You can make up a rule.

suppose we had a case in which the function was divided

by a constant. How would you handle this?

See if you can differentiate the function shown below

and then devise a rule to cover such a situation.

Rule:

x
Y =

2

=

Check your answer on page 50.
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ans. 1. 2. 10x3 3. 7x" 4 V 5.

12I x

There are many tricks to finding the derivatives of

various kinds of functions and we are going to examine only

a few of them. Just enough to get you started in the right

direction and to give you some notion of what it is all about.

The more difficult tricks -- and how to apply them to practical

problems -- you will learn ill your regular calculus course.

However, before getting br.4ck to The Mystery of the

Thrown Ball, there is at least one more trick we should con-

sider. This is the matter of how to differentiate a function

having; a fractional exponent.

Let us suppose, for example, we need to find the der-

ivative of the function y AfR:

Do you recognize that x in this case has a fractional

exponent? Remember: the square root of x can also be written

as x11' , right? Therefore we can write the function as

y =

That being the case, then y' =

(Follow your regular rule for finding the derivative

of some power of x.)

to page 51 to check your answer.
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.4ans. Since 7. is the same as 4x2, the is simply the

constant coefficient of x2 ; hence y' = 2Mx2-1 or
yt = x. Rule: To find the derivative of a function
divided by a constant, treat the constant as a
fractional multiplier.

Here is how we might write, symbolically, the rule

derived on the preceding page:

D-6 dx c c dx

Another example of this rule would be as follows:

3x , 3x2 x2If y = then y - 5 - .

2x 2Or if y = 7, then y' = .3x
2

= 2x2.

The point is this: Treat the fraction an you would any

other constant coefficient of the variable.

Perhaps worldly, o few problems of this type will clarify

things further and give you more confidence. Here they are.

rind the derivatives of the following functions:

72
1. y = YI4

2. y = YI =2

71,3
3. y = =

4. Y =
2%2
5 =

5. y =
A

Turn to page 49 to check your answers.
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ans. y' - = =
1

2x2 2 08Fc

BEST COPY AVAILABLE

1

Did you remember your basic rule? Here it is again,

a bit more simply stated: To differentiate a Dower (whether

it is a fractional Dower or a whole number) multiply by the

Dower and reduce the exponent b one.

You will see that we did exactly this in arriving at

the answer shown on the previous page. And in case you may

have forgotten what you learned in algebra about exponents,

a negative exponent becomes positive when the term is moved

from the numerator to the denominator of a fraction. This is

because multiplying both numerator and denominator by the

equivalent vositive power has the effect of moving the

variable with the negative exponent to the opposite side of

the fraction bar and makin it positive.

Try it for yourself, but be sure you have shown each

step of the work before comparing your answer with that shown

on page 52.

Convert x.''" to a positive exponent.

Turn to page 52 to check your answer.
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.-- ,.o
x'- x *- ., 1

axis. - .9- = (Any number to the zero
' 1 .ryx+4 x-

power is 1, hence

x° = 1.)

-52-

Although there are a number of other derivative formulas

(most of which you will encounter in your regular calculus

course), we are only going to concern ourselves with two more

of these -- the derivative of a product and the derivative of

the quotient of two functions,

On page 48 we used the additional variables u, v and w

to represent other functions of x. We are going to use two

of these variables here, u and v, to simplify our ex-

planation of how to differentiate a product. Because we have

been using fairly simple expressions -- such as x2, 3y4, xa,

etc. -- you may not see the need of introducing two more variables.

But as you advance to workin:; with more complex expressions you

will come to appreciate the clarity that this little trick can

bring to a problem.

For example, we said above we were going to talk about

how to find the derivative of the product of two functions

of x. Now suppose this product was (x2 + 3x + 4)(x3 + x - 1).

We would then have to write

+ 3x + 4) (x3 + x - 1).

However, if we let u = x2 + 3x + 4 and v = x3 + x - 1,

then we can simplify the whole thin,: and express the formula

for the derivative of the Y. duct of two functions as

D-7 (ali) =
dv

+ vemi-
du

ax ux ax

See if you can put this formula into words.

Turn to page 54 to check your wording.
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ans. (x
2
+ 1) (1) + (x 4) (2x) = 3x

2
- 8x + 1

7

liaving examined briefly the formula for the derivative

of the product of two functions and the way in which this formula

is used, let us take an equally brief look at the formula for

the derivative of the quotient of two functions.

This formula is as follows:

D-8

du dvv-- - u--
grk )

dx dx
l v2

Put into words we would say: The derivative of the QUO.-

tient of two functions i$ eoual to the denominator til3eo the

OerivaLivc of the numerator, minus the numerator times the

derivative of the denomiVilri_aljjakaLt4111 denominator

i4,2aared.

As usual, the procedure can be expressed more clearly in

symbols than in words. (Remember: If you find yourself wonder-

ing why the product and quotient derivative formulas are the way

they are, it would be good practice trying to derive them your-

self using the delta method. Check your procedure with that

given in any good calculus text in case you get lost along the

way.)

Now let's see how the quotient formula works by di:fer-

2x
2

+ 3entiatin:7; the expression y =
+ 1

Settin2; u = 2x2 + 3 and v = x - 1, we get

,11:

dx
ix - 1 4x2 - 4x - 3

(x - 1) 2

-
(x - 1)4

x3 - 5What would be the derivative of y =

Turn to page 55 to check your answer.
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ans. The derivative of the product of two functions is
equal to the first times the derivative of the second,
plus the second times the derivative of the first.

Very well, let's try using this formula. To do so we

will find the derivative of the product of the two functions

x2 + 3x + 4 and x3 + x - 1.

First, however, let us restate our formula so that it

will be readily available to refer to:

dv du
-arc(uv) = u + v

Let us also remind ourselves that,

x2
+ 3x + 4

and

Since

and

then
dx

(uv)

du
dx

= 2x + 3

dv
urc = 3x

2
+ 1,

in this example,

= (x2+3x+4)(3x2+1) +

UR

(x3+x-1)(2x+3)

Since multiplying these expressions and combining like

terms where possible to simplify is purely an algebraic exercise

and would add nothing to your understanding of the procedure,

we will not take the problem any further -- although you are

welcome to do so if you feel you need the practice. (Answer:

5x4 - 12x3 + 15x2 + 4x + 1.) At the moment we are only interested

in demonstrating the procedure, or use of the formula, for

finding the derivative of the, product of two functions.

However, here is a somewhat simpler problem for you to
complete by yourself.

d../x2
oz. % 1)(x - 4) =

Check your answer by turning to page 53.
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ans.

BEST COPT MARI

4.3 r 9
11.X.3 9.2 + 10=Y' =

(2x+3)2 (2x-F3)

On pace 47 we summarized the rules for differentiation

which we had covered to that point. Now let us summarize the

additional rules we have worked with since then.

Rule

(u+v+w+...)=

dv dw
dx dx dx

aZI
-6

1.,y
dx `c/ = "dx

DI /
=

dv du
" dx dx

d u
D-8 711-(7) =

v(k) - u(g)

V2

Meanina ..-.-.........+01=0=11p=1

To differentiate the sum of several terms
connected by plus or minus signs, differentiate
each term in succession.

When differentiating a function divided by
a constant, treat the constant as a frac-
tional multiplier.

The derivative of the product of two functions
is equal to the first times the derivative of
the second, plus the second times the deriva-
tive of the first.

The derivative of the quotient of two func-
tions is equal to the denominator times the
derivative of the numerator, minus the num-
erator times the derivative of the denomin-
ator, all divided by the square of the denom-
inator.

Turn the pa3e now and we'll look a little further into

the meanin3 and application of differentiation.



Now that you have had a little experience in differ-

entiating functions to find their instantaneous rates of

change (and that is what we have been doing, in case you

have forgotten), let us see how the procedure works in the

case of the ball,rising and falling under the influence of

gravity.

Our equation for the height of the ball was, if you will

recall, h = 128t - 16t2. From what we have learned,

therefore, we can now differentiate this expression to find

the time rate of changetheight. Thus,

dh
TT or

,

= 1.128.0-1 - 2.16t2-1

or h' = 128 - 32t.

(distance)
That is, the rate of change of height/with time is equal

to 128 - 32t. Hence for t = 2 seconds (the instant we origin-

ally selected for analysis), h', or v (for velocity), =

123 - 64, or 64 feet rer second, precisely the instantaneous

velocity value for t 2 which we found by approximation on

page 20.

What would be the value of h' for t = 4?

h' =

Turn to page 53 to check your answer.



Mathematical symbols are distressing only if you don't

understand them. The ones we will use in our general approach

to finding a derivative are all ones with which you are ac-

quainted:

Ax = a little bit of x

.Ay = a little bit of y

f(x) = any function of x

So this time instead of using the specific function

y = x2 , let us substitute for x
2
the more general expression

f(x). This gives us

y = f(x).

Now considering,as we did on page 24, a point Q on the

curve f(x), a short distance away (4x horizontally andAy

vertically) from the point P, its coordinates will be y +Ay

and x +ANx.

Substituting these coordinates of the point Q for y and

x in our equation y = f(x) therefore gives us:

Turn to paL'e 59 to check your answer.



ans. 128 - 32.4 = 120 - 128 = 0

4.0..I ps.111

Does that answer surprise you?

It won't if you will turn back to page 13 and observe

from the r;raph that the ball was riAr (its speed decreasinrr)

between t = 0 and t = 4. After t = 4 the ball was fal?inr

(its speed increasin,'.). At t = 4, therefore, the instantan-

eous velocity was zero; the ball was momentarily at rest,

neither rising nor falling.

In pares 28 to 33 we illustrated, both algebraically

and 7.:L1hical1y, what is i!.onerally referred to as the delta (A)

approach to finding a derivative. For this purpose we used

the specific function y = x2.

Now, in order to keep at least a minimum of faith with

the professional mathematicians -- and without, I think,

alarming you unduly -- we will do the same thing using a

rencral case.

Turn to page 57, please, and we'll have a zo at it.



ans. py = f(x + Ax)
BEST CON AVAILABLE

Knowinz;, then, that the value of the function y = f(x)

at the point .72 is y Gy = f(x Ax), and recalling from

the general statement. of the function that y = f(x), we'can

substitute this last value for y in the equation

y t4r = &X)
givinc us f(x) = f(x Ax)
fron which = f(x + (,.ax) - f(x) (subtract-

in; f(x) from
both sides).

Dividin!7 both sides
by 4.1X. we get

f(::1
L Ax

What does this last, boxed-in, expression represent?

3 if you can put it into words in the space provided below.

0/,.....M.011111.1111M=1.11101=1.101.11.MINMIDINISI.OMIONIM*4111.111.10

Turn to /mere 60 to cheolc your answer.
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Qhc ;f:,neral c::prer!nion for the elope of the secant
line S, or the aver a;I:e rate of change (growth rate)
of the function with respect to x.

Compare this expression, f(x + d x) f(x)
x

for the secant S with that for the function y = x2 found on

page 29. The expression AZ = 2x +/Ix on page 31 represented

the average rate of change in the specific function y = x2

4.2over the interval dx. On the other hand - f(x + .o x) - f(x )
,dx isx

represents the average change of any function (represented by

Y = f(x)) over the interval Ax.

To find the 7eneral expression for the derivative, then,

we again imagine Q to approach nearer and nearer the point P.

That is, we allow ax to approach zero as a limit. This gives us

j

x ---->.06x. 4 x ax
lima. = LLIS_LAId_=_L.W. ly

=

This, then, is the general expression for the derivative

of a function, or the instantaneous rate of chance of y with

respect to x (or whatever "name" we give to the variables --

h and to x and y, u and v, etc.).



CHAPTM 5: DIFFERENTIAL C T'ICULUSPUT TO WORK

No doubt you are beginning to wonder if all this is

leading to something useful.

As nointed out earlier there are many, many practical

applications for differential calculus, a great number of which

you will be exposed to in your regular calculus course. Since

this book was designed simply to initiate you into some of the

fundamental concepts at a slower pace than usually is possible

in a standard academic course, we will not attempt to explore

any more types of standard derivatives. Nor will we get in-

volved, to any real extent, with applications. However, it

would not be fair to leave you without having had the fun of

applying some of the fundamental things you have learned.

Therefore we will look at some examples together. First,

however, a word of caution.

We have used the variables x and y most frequently be-

cause that are considered treneral variables (that is, they

represent any variables) and because they also represent the

familiar coordinates of the Cartesian coordinate system. But

don't r :et the idea that they are the only two variables used

in calculus: We have already had an example of two other,

specific, variables in the problem of the thrown ball.

What were these two variables?

Turn to Daze 62 to check your answer.



rn110, :1:1.':t

anc. t (time) and h (heicht) BEST COPY AVAILABLE

Ixamnle 1

Suppose we wished to know the rate of variation of the

volume of a cylinder with respect to its radius when the ra-

dius is 5 inches and the height of the cylinder is 20 inches.

In other words, how much will the volume (in cubic inches, of

course) chan,,,e for a change of one inch in the radius of the

cylinder under the particular conditions where r = 5 inches

and h = 20 inches?

This situation is shown in the sketch

at the righc.

We must start with the formula for the

volume of a cylinder, namely, V =lfr2h.

And since our problem is to find the rate of change of V with

respect to r, we take the derivative of V with respect to r,

namely,
V = qr2

h

Vt= 2lrrh (h, of course, is a constant
in this problem)

Substituting the given values r = 5 and = 20 we get

Vt = 2.111.5.20 = 628 cubic inches/inch change of
radius.

What this means is that at the particular point where

r = 5 inches the volume of the cylinder is changing at the

rate of 628 cubic inches for a change of one inch in the radius.

Although you may feel that this is not the kind of prob-

lem you are apt to encounter in your kitchen or workshop, it

is a simple example of a very common tat of problem found in

engineerirg. How might it be of use, for example, in designing

containers?

turn to .-pae 64 to checl: your answer.
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ans. DI = 2t 6t
2

= 20 600 = 620 feet/second

ENftranle

Acceleration is defined as the rate of change of velocity

with respect to time. If the velocity (in feet per second) of

a certain airplane in a dive is v = 300 + 4t2 , where t is the

number of seconds since the dive began, what is the formula

for the acceleration and what is the acceleration value for

t = 10?

Since acceleration in the rate of change of velocity

with time, if we take the derivative of the velocity formula

given above it should yield the formula for acceleration.

Right? Letts try it.

v = 300 + 4t2

Taking the derivative
of v with respect to t, vl = 8t = formula for acceleration.

But since vl represents acceleration, we can write it as

a = 8t.

Therefore, for t = 10, a = 80 feet/second2.

Question: What would be the acceleration formula if

the velocity was v = 50t + t3, and what would be the

acceleration value when t = 4 seconds?

V.........001111.1

Turn to pas'e 65 to check your answer.
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ans. Poi, a certain hei,ht of can (circular) container
one could estimate added volume for increased radius.

Your answer: may differ somewhat from that given, but the

important thing is to understand what the derivative of a func-

tion such as this means and how it can be used in a practical

way.

Example 2

An object moving in a straight line is t + t3 feet from

its starting point after t seconds. What is its velocity after

10 seconds?

If the object is t + t3 feet from its starting point

after 10 seconds, then t + t3 must represent the distance it

has travelled. We can write this as

D = t + t3

and we have our function, or relationship, between distance

and time. And since velocity is simply the rate of change of

distance with time, if we take the derivative of D with respect

to t we should have an expression for velocity. Thus,

D = t + t3

and = 1 + 3t
2

.

Substituting the value 10 (seconds) for t gives us

DI = 301 feet/second, the instantaneous

velocity of the object at t = 10.

Ouestion: What would the velocity be after 10 seconds

if the object were moving at the rate D = 1 + t
2
+ 2t 3

?

Turn to parse 63 to check your answer.



from pao 63

BEST COPY NAM
0

ans. a = 50 3t', for t = 4, a = 50 + 48 = 98 feet/sec2

Pixamnle 4

A certain firm makes a profit of $P each month when it

produces x tons of a certain commodity, where P = 1500 + 15x2 - x3.

What is the most advantageous monthly output for the company?

Obviously the most advantageous output will be the one

that produces the greatest profit in dollars. The question

is, then, what production tonnage (x) will yield the most

dollars? This means we are seeking the maximum rate of change

P with respect to x.

Let's start out by solving this graphically, plotting the

graph 02 P as a function of x and finding out where the maxi-

mum (high) point of the curve is. To do this we will use the

values x = 0, 5, 10, and 15 and sketch in the rest

of the curve without tabulating values.
7.t.0 -Pp

2.1)60

picita

sco

(700 4

t:v

0 ' S
The tonnage that yields a maximum profit is, x =

for which P =

The rate of change of P with respect to x is (from the

formula at the top of the page) , Pt =

What would you expect the value of Vto be at the point

x= 10?

Turn'to l'ac:e 66 to check your answer
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arx. x = 10, P = 02,000;430x - 3x2
; zero.

c; ( -

The first answer simply represents the coordinates of

the high point of the curve; the table of values,:of course,

gives the same information.

The second answer represents the derivative of P with

respect to x in the given formula, that is, the instantaneous

rate of change of profit dollars with respect to tons produced.

If you got the answer to the third question correct you

did very well indeed, for this involved a little thinking about

what the derivative means graphically. Do you recall we said

earlier that it represents the tangent to the curve at a point,

or the slope of the curve? It isn't hard to visualize the slope

of a curve that is headed either up or down. But what does

the slope look like when the curve is going neither up or down?

This is the situation we find at the high point of the curve.

If you pmt the correct answer you realized that the slops

would be zero at the maximum point (or at a minimum point,

thou'h we won't go into that here), because the tangent would

be parallel to the x-axis.

If all this is so, then substituting the value 10 for x

in the derivative of P, namely P' = 30x - 3x
2

, should produce

a value of zoro for P'. Try it.'

For x = 10, PI

Turn to pace 68 to check your answer.
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an Trionamotric, Invorce-Trizonometric, Exponential,
Iozarithnic

-0-

Don't become alarmed. We are not going to become in-

volved in all the possibilities that exist for differentiating

the various types of transcendental functions. We are really

only going to look at two: the derivative of a trigonometric

function and of a logarithmic function.

However, since it won't help you to know how to differ-

entiate such functions unless you first can recognize them,

look at the functions below and cee if you cam identify them

as either algebraic, trigonometric or exponential.

1. y = sin(x2 - 3)

2. y = ex

3. y = 2x3 - 3

4. y = 2 cos x sinx

MIMIN.P11.111......

Turn to paze 69 to check your answer.
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ans. PI = 300 - 3.100 = 300 - 300 = 0

Since the possibilities for application are nearly limit-

less we will not include any further examples. You will find

all of these you want in any first-year book on calculus. Re-

member: our purpose here is not to supPlant such a text, merely

to surrolement it by introducing you to the basic concepts at a

leisurely pace.

Before leaving this brief excursion into differential

calculus, however, there is another class of functions with

which you should at least be familiar, These are known as

"transcendental" functions. And in case you don't recognize

this term from your study of algebra, a transcendental function

is one which is non - algebraic, although it is an important

branch of the family of mathematics. Below is a chart that

should help to refresh your memory regarding the various

branches of the family of functions and equations.

Polynomial
Algebraic

Non-Polynomial

Mathematical Trigonometric

1-Inverse-Trigonomtric
1 Transcendental

I

Exponential

LogarithmicL-Logarithmic

Write below the names of the four kinds of transcendental

functions shown in the chart above.

2. 3.

Turn to r)sp.7e 67 to check your answer.
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ans. 1. trionometric 3. albecraic
2. exponential 4. trigonometric BESTOPAIMBLE

Example 2 is an exnenential function; example 3 is an

al7obrc,ic (power) function. Be careful that you don't confuse

them. An exronontial function (which is a kind of transcendental

function) consists of a constant (or variable) with a variable

exponent. A power function (which is a kind of algebraic function)

consists of a variable with a constant exponent.

I'm sure you had no difficulty recognizing examples 1

and 4 as trigonometric functions, and this is the type of function

we will examine first.

The derivative of any of the trigonometric functions can

be arrived at by means of the delta process, however we are not

goin to make you wade through this. We are only going to con-

sider the sine function and will simply state that

D-9
74:(sin v) = cos v= ,

where v is simply some function of x.

Applying this rule to example 1 from page 70 we get

y = sin(x2 - 3), hence v = x2 - 3 and dire 2x

therefore y' = 2x cos (x2 - 3).

Use this approach to find the derivative of the following

function:

y = sin(z3 - 14x); YI =

Turn to page 70 to check your answer.
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ans. y' 2(x' - 2)cos(x3 - 4x)

= 2x2 - 4 cos(x3 - 4x)
BEST COPY AVAIIABLE,

Your textbook (or any table of standard derivatives)

will give you the formulas for finding the derivatives of

the other trigonometric functions. To use them you just

apply them in the same way we did on the previous page for the

sine function. However, let us turn our attention now to the

problem of finding the derivative of a logarithmic function.

This is interesting because it introduces the concept of the

so-called "natural" logarithmic base e.

In algebra we are used to working with the logarithmic

base 10, the base used for "common" or Briggsian logs. Let

us consider, however, what the derivative might be of the

function y = logbx if we treat it temporarily as an algebraic

expression and don't worry about what the base b represents.

Using the delta method we arrive at the expression
1

73
4=AZ =
6:c x

This looks a bit messy, but as we allowLx to approach 0,

A,
the exnon3rtial function (1 +4-.) 7 appears to approach

1.

the value 2.718... as a limit, hence the derivative becomes

--Z( =loft
b 2.718.dx x -
2.718..

comes the trick. If we allow b = e = 2.718..., then

the derivative simplifies very beautifully to

dx(loqe
14 = --

Continue on page 71.
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Thus we arrive at the base e = 2.718... for what is

termed the "natural" logarithmic base, or the base of natural

logs. The only thing natural about it is, of course, that it

is "naturally convenient" in order to make the standard, step-

by -step process of differentiation work out simply for a log-

arithmic function.

Logarithms taken to the base e also are known as Naperian

logs, after the man who first calculated the tables for them.

Because of their convenience, Naperian or natural logs are used

almost exclusively in calculus and advanced mathematics.

Finally, then, the formula for the derivative of a log-

arithmic function (v) of x is

D-10 d 1 dva(iogev) = Tx-

Let us take as an exampliziof the use of this formula the

function y = log(x2 - 2). (We will not continue to write in

the base e but henceforth will consider it understood.)

Since v,in this case is (x2 - 2), our formula tells us

to take the derivative of this expression with respect to x

and to place this over the function itself. Therefore,

2xy n

x 2

Now suppose you try differentiating the function

y = log(x2 + 3x - 2).

Turn to Ipa,7,e 72 to check your answer.
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So now we have arrived at the derivative formulas for two

transcendental functions -- one trigonometric and one log-

arithmic -- and the last two we will investigate. They are:

Rule Meaning

dvD-9 (sin v) = cosy The derivative of the sine of v (somedx dx
function of x) eouals the cosine of the
function times the derivative of the func-
tion with respect to x.

1 dv
D-10 zri(loev) cix The derivative of the logarithm (to the

base e) of some function of x is equal
to the derivative of the function with
respect to x times 1 over the function
itself.

Although there are many other standard derivative form-

ulas or rules, they can all be arrived at by the same general

delta process we have used thus far.

In brief, the approach we have followed in the foregoing

pages is all there is to differential calculus. Everything

else is just a systemmatic application of the same basic idea

to different types of functions for different special pur-

poses. Once we have used the delta process to find the general

rules, we then use these general rules (formulas) to solve

problems because they make the solution faster and simpler.

With this in mind turn to the next page where you will

find a quick review o±everything we have covered on the subject

of differential calculus, after which we will proceed to explore

the companion subject of integral calculus.
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Review o1 dif:Lorential calculus concepts.

Review Item

1. In mathematics when we speak
of "approaching a limit" the
limit referred to usually is
zero.

Page
ref.

8

Example

When one is running out
of gas, the amount re-
maining in the tank is
approaching: zero as a
limit.

2. The notion of approaching zero
w; a limit can be represented
symbolically.

10 If Gr represents the

gas remaining (in the
example above) then we
can write this as

G

3. A major problem that led to
the development of calculus
was that of how to determine
the instantaneous, rather than
the averacq), velocity of an
object whose speed varies
with time.

11 A free-falling body,
such as an object thrown
into the air or dropped
from a height, is an ex-
ample of one whose velo-
city varies with time..

4. The speed, at any given in-
stant, of a free-falling body
can be esti7ated quite close-
ly by calculating its averar,e
speed over shorter and short-
er intervals.

14,
16

(see pages 14 and 16

an aid to understanding
the relationship between two
variables (such as height or
distance with time, x and y,
etc.) it is often helpful to
draw a Trap_ h of that relation-

21

6. The share of the resulting 24
curve represents the rate at
which either variable is
chanin,:7 value with respect to
the other variable.

slope of a curve at any 24
poin (which we measure

by means of a line tanr-ent to
the curve at that noinf) rep-
re ants the direction of the
curve.

Relationships such as:

h = 128t - 16t
2

, or

Y = x
2

tr

r I t

!-)

I
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8. To assist in analyin the
relationshin between the two
variables in a function such
as y = x2, we r;raph the func
tion, select a fixed point, P,
and another point, Q, on the
curve a short distance from P.

vago
ref.

25

Example

11.
A straight line nassin
through the two points is
called the "secant" (S) , and
the ri7ht triaro:le formed
thereunder has as its sides
the two coordinate distances
(Ax rmddy) between the
noints.

25

IRMO 4.0.

Aci

:`/-1.1

--lx-rnxj
"!A ti+!;

A

10.The slope of the secant, S,
t'nen. Ay over. Ax.

11. Yr, order to observe how the
relationship between x and y
varies along; the curve, we

the noint Q to grad-
ually aPproach the point P,
and hence the secant S to
radually approach the tan-
rent line T.

26 Slone S =42
dX

31

12. To find a mathematical ex-
pression for the slope of
the secant line as 0.
annroaches Po we substitute
the coordinates o Q
(x +11x and y +AA in the
ecluation of to curve,
namely, y = x4. This gives
us the expression

= 2x +4x for the

slope of S.

30,
31

Coordinates of
Q = (x +46x) and (y +4y).
Substituting; these
values for x and ,y in
the equation y = x4
gives us:

y +4y = x2
+ 2x,4x +la2

or, substituting x2
for

y and dividing both
sides by x,

41Y = 2x +/ix
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Page
ref. Example

13. As 0. approaches P, Qx r :ets
shorter and sh orter, that is,
it anproaches zero as a limit.

31

arrives at the point
,'/-.P,Ax does become zero, thus

hec°
,AntrOtj dropping out of the expres-

.T AYsiun 2x + 4x, and the
4x

secant line becomes (coin-
, cities with) the tangent to
the curve at P.

.

53

11.1.11.1111.11111.101P.411

A

15. What occurs in item 14 above
can he expressed symbolic-
rialy as shown in the example
onposite; verbally we say
that "the limit of
4Y

x-- '

as Q x apnroacbcs zero

a a limit, is 2x."

33

lim = 2x
Ax.-)0 4-14

16. The name given to the limit- 38

ing value of 417- as AxAx
annroaches zero is "deriva-
tive," and it is 1,,ritten as

A derivative, then, isdx*
linitinr: value.

ell .1=2111111.

liM 4+rcA = ((I; = derivative
x-->0

cix means the deriva-

tive of y with respect

to x.

17. The derivative of y with re- 38
Ovf 2.soect to x in the expression ux ) = 2x

2
= x iS 2x.

18. There are four conlmon ways of 40
4:1. = y' = ft(X) =exnressin7 the derivative of ax

1T with respect to x. d d

7E7Y = URf(x)

19. Looking at item 17, it is
anna-;:.ent that we could have
found the derivative of

2
y == x simply by multinlyinp:

the rir'ht-han, member of the
ecuation by the exponent, 2,
and then reducing the orig-
inal exponent by one to get
th e new exponent.

4')

50(x2) = 2.x2-1
= 9x

or yt= 2x



Reviw ]Lom
ref. 11;xample

20. 'Oho ;(Irieral rule for finding
the derivative of some power
of x is:

(x
n
) = n.xn-1ax

We read this as: The deriva-
tive of x to the nth nower
is equal to n times x to the
n-min-ls-1 rower.

44

d 4
717 1/4x

= 4x3

21. The derivative of a constant
is zero. Thus,

a /
kc) = 0ax

43

0

22. The derivative of x (or of
any variable) with resnect
to itself is one (1).

.4.6

23. The term "different;
means "find the dPia..ttive
of."

47

24. To differentiate a function
composed of several terms
connected by plus or minus

simnly differentiate
one term at a time.

Synbolically expressed:

+ v + w + ...) =

du dv dw
C x dx dx

48

To differentiate the func-

tion y = x5 means to
find the deriVTElve of y
with respect to x in

the function y = x5
.

If y 2x4 + 3x2 - 4x,

then 50= 2x 3
+ 6x - 4.

OIM111.

25. To find the derivative of a
function divided by a con-
stFnt, treat the constant as
a fractional multiplier.

A
" = 1

77'ci c dx

If y =

then y =

and y' =

3x
2

3
0;
2-

4

3vx or
2
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Review Item

26. To differentiate a fraction-
Dower, multiply by the

fraction and reduce the ex-
ponent by one (just as you
would with any exponent).

Vap:e

ref.

51

Example

yl = .L x-'s

27. The derivative of the pro-
1 52

duct of two functions is
equal to the first times the
derivative of the second,
plus the second times the
derivative of the first. Thus

d
uv--ca-k) = u(41-1-v.(2--11

ax111,11

d 2
757(x )(x3 )

x2(-
,

2.
x ) + x3(2x)

= 3X
4 + 2x4

= 5x4

28. The derivative of the oao- 53
tient of two functions is
eoual to the denominator
times the derivative of the
numerator, minus the numera-
tor tires the derivative of
the denominator, all divided
by the denominator squared.

du dv

dx (v
) vu7 - u--

dx

v2

amomomilm11111

d x'
c"J7(7)

x5(2x)
x4

5x
6

- 2x
6

x4

3x
6

2= = 3x

29. Takin-, the derivative of
height (h) with respect to
time (t) in the eouation
riving the chane in height
(with time) of the ball throx
into the air, yields the
formula for the int,:l.ntan-
eous velocity of the ball at
any ,--ivan instant.

56
h = 128t - 16t2

ht = 128 - 32t

When t = 2, then ht,
or v, = 64 ft/sec.
(note that h, actually
is v, the velocity or
time rate of change of
the position of the ball)

The -011,0ra oxnrc,:sion for
the derivative is obtained
in the same general way that
we found the derivative of

the flnction y = x2.. 57,

,59
60

if y = f(x), 'men "44x
f(x - f(x) dv

674

31. Trn.nscendental f-.tnctions are
r.on-al!._;ebraio fam;tions.

Tvigonometric, expo-
nential and logarithmic
functions.



Review Item

32. The derivative of the sine
of v (sonic function of x)
eouals the cosine of the
function times the deriva-
tive of the function with
respect to x. Thus,

dvsin v ) = cos ---ax vdx

Marne

ref.

69

-78-

Example

y = sin x2

= 23c cos x2

33. In calculus and advanced
mathematics the so-called
"natural base," e, (equal
to 2.718...) is used as the
ba::',1 for loarithms.

71

(See page 70 )

34. The derivative of the lo-
arithm (to the base e) of
some function of x is equal
tr, the derivative of the
function with respect to
x, mlatiPlied by 1 over
(that is, the reciprocal
of) the function itself.
Thus,

d 1 dv
,7 =( 10 v dx

71
y = log (x + 3)

3x4

x5 + 3

And now since you Probably would like to discover how

much you have learned, turn to page 79 and take the short

self-quiz you will find there.
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Solluir; on the basic concerts of Differential Calculus

(Circle the correct answer or fill in the missin information)

71. Differentiate the expression y = )7.4 .

2. 1"ind the derivative of n with respect to

r in the equation s = 8r'.

ans.

ans.

3. The symbol A is used in calculus to mean

4. The derivative (rate of chanP.e) of distance

with respect to time is called velocity. True False

5. A lonp:-standing matnematical problem whose

solution led to the invention of differen-
averaze

tial calculus was that of findinrr, a way to
instantaneous

determine the velocity of an

object.

6. The derivative of a constant is

7. and adi mean the same thing.

8. The symbol > means

True False

9. Find the derivative of y with respect to x

in the expression 7 = ans.

10. In the fir:ure at the rir,ht what is the

line passing through the two points

of the curve called? ans.111 40111
11. -Differentiate the expression y = x3+2x

2
-4x+1.ans.

12. The derivative of any variable with respect

to itself is
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Self-Quiz (continued)

13. The slope of a curve at a point is measured

by the an le between the to the

curve at that point and the x-axis.

14. Find the derivative of y with respect to x

in the expression y = x2 using the delta (A)

method. Show all steps.

15. The formula for the area of a circle is

(as you probably recall) A ='r r2.

Find the expression for the rate at which

the area is changing with respect to the

radius, and evaluate this expression for ans.(1)

r = 2 feet. ans.(2).

dv16. Write
dx

rite the expression for -- in terms of

Ay and Ax. ans.

17. An automobile moving in a straight line is

a distance of 2t + 3t2 from its starting

point after t seconds. What is its

velocity after 12 seconds. (Remember:

The derivative of distance with respect

to time is velocity.)

18. If the velocity of an object is given by

the forrlula v = 200 + 5t 2
, what would be

its accelenation value for t = 8? (The

velocity is in feet per second. Remember

that acceleration is the time rate of

chane of velocity.)

ans.

ans.



;i01:1-ouit; (continued)

10. Ivaluate the _lope of the curve defined by

the expression y = x
2
- 4x for the value

x = 2. ans.

20. In the previous problem what does the value

of the slope tell us about the curve at the

noint x = 2? ans...

21. Find the derivative of y with respect to x

in the following expression: y = (2x+1)(x2-2). y' =

(Use the product formula from page 52. )

22. Using ; the quotient formula from page 54
2

4. 1differentiate the expression y = "2 ans.
x - 1

23. The expression y = tan(x2 + 3) is a tran-

scendental function. True False

24. What is the derivative of the expression

y = sin(x3 + 1)? ans.

25. Find y' if y = log (x3+ 1). ans. yl =

Turn to pap:e 82 to check your answers.



Answers to Self-Quiz on Differential Calculus

Pape ref.
1. 12x.3 41

9
41

3. a little bit of, or an increment of; thus,Ax means 25

a little bit of x.

4. True 56,64

5. instantaneous 2

6. zero 43

7. False. --.. represents the average rate of growth of 38

a function, or average rate of change. ax is the

value of the ratio as the interval 6x

of the independent variable approaches the limit zero.

dy
Therefore, a5z is the Instantaneous rate of change

of a function at the point in question.

8. approaches
1

9. y' =
x2

10. the secant

11. yi = 3x
2
+ 4x - 4

12.

13.

14.

7

52

23

47,48

one (1) 46

tangent 24

(see paj;e 30) 37,38

15. A' = 21rr; when r = 2, A" = 41t; or the instantaneous 62

rate of change of the area of a circle when r = 2 feet

is approximately 12.56 square feet per unit change in

the radius.
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Answers to Self-Quiz (continued)

Pane ref.

16. lim = 4-Y 38
x---bp 0 4x a

17. d = 2t + 3t
2

dt= v = 2 + 6t

when t = 12 seconds, v = 2 + 6(12) = 74 ft/sec

18. v = 200 + 5t 2

vt= a = 10t

when t = 8 ft/sec, a = 80 ft/sec/sec

19. y = x2 - 4x

yt= slope = 2x -

when x = 2, yt =0

64

63

6E)

20. Since the slope of the curve = 0, the tangent to 66

the curve at the point x = 2 is parallel to the

x-axis, meaning that this is either a maximum or

a minimum Point on the curve and that the curve

is changing; direction.

21. y = (2x + 1)(x2 - 2)

yt= (2x + 1)2x + (x2 - 2)2

= 4x
2
+ 2x + 2x2 - 4

= 6x2 + - 4

22
= 2

x

t (X2 1)2xy- =
(x2 1)2

-Ax

(X2* -
1;

54

53

1
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Answers to Self-Quiz (continued)

23. True

-84-

Pa_ ref.

68

24. From the formula on pane 72, 69

y = sin(x3 + 1)

axsince v x3 1, then uR = 3x2

and yl = 3x2cos(x3 + 1)

25. .V:ain from page 72, using the log formula for the 71

derivative,

y = log(x3 + 1)

since v = x3 + 1 and = 3x2, then

Y'

3x2

x3 + 1

If you rot 20 or more right you did very well indeed.

If you missed more than five you would do well to review

the items you missed.

' :ow it's time for us to consider the subject of int:,rral

calculus, the counterpart of differentail calculus. So please

turn to page 85 and we'll proceed.



CHAPTn A LOOX AT INTEGR&L CALCULUS

In arithmetic and algebra we have several operations that

are the inverse of one another. That is, one operation undoes

the other.

For example, subtraction is the inverse of addition because

it undoes addition. Division is the inverse of multiplication

. because it undoes multiplication. Similarly, taking the square

root of a number is the inverse of squaring the number (except,

of course, that in taking square root we wind up with two

answers since the original number could have been either

positive or negative).

The relationship between differential calculus and integral

calculus is quite similat, for integral calculus is, in effect,

the inverse of differential calculus. For eample, the process

of differentiating the expression y = x3 consists of finding

the derivative of y with respect to x. Prom what we have

learned in the preceding chapters we know that this would

be y' = 3x2.

Suppose, however, we were riven the expression y' = 3x2

and asked to perform the process of inteo.ration (not in its

social sense, please) on it.' This would mean findin,T, the

ori.inal expression from which yl = 3x 2
was derived. What

would we have to do to 3x2
to turn it into x 3

?

dosiellOmM04.1mOMIIMIM

Turn to *.o..;e to 0:leek your answar.
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ans. Divide by 3 and increase the exponent by one.

Let's apply this procedure and see if it works.

3x2

Dividing, this expression by 3 and increasinc the ex-

ponent by one gives us
-1

37:y = '...=x3
, our original expression.

Soems to work, doesn't it? This is integration.

Now there is a rather odd-looking symbol, known as

an interal si.:n, that is used to indicate this process of

rinte.j.ration and it is this: . Basically it is simply an

elongated S. Thus if we wished to indicate that the process

of integration was required we would place this sin in front

of the expression. Apply it to the problem above we would

S.
get: y = 3x2 = x3.

However, there is still one thin;; lacking, namely, some

indication as to the variable with respect to which the inte-

:;ration is to be performed. In the above example since we

wish the integration to be perforNed with respect to the

variable x, we indicate this by adding (11.: after the term 3x2

(which, by the way, is called the inte:rand). This ,gives us

.1.9
7

3x-'dx = x'.

Ia .:;eneral terms then: To integrate a simple exponential

function such as the one we have used here, increase t.,:e ex-

7,onent blr one and divide the exnression bar the new exnonent.

:ry t:ds on the followin,.; probles:

c
1. 5x-rdx = 3. 16x2dx =

2. p.x3dx = 4. xdx =

Turn to nae S7 to check yellr answers.
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ans. 1. x5 2. x4 3. 2x3 4. 1x2

?or simplicity's sake we have so far omitted something
is

that actually /quite important. I wonder if you know what it

is? Here's a hint.

Sometimes in "going backwards" by inverse operation to

find an oriinal expression we run into in inherent uncertain-

ty. Por instance, in taking the square root of a number we

can't be sure whether the original term was positive or neg-

ative. Thus, the square root of 4 could be either +2 or -2.

tow then do we know which is correct? The answer is, we don't.

We sinnly have two possible answers, both of which may be

correct.

Dearinr; this in mind and the fact that in the process of

differentiation constants drop out, what do you think is wrong

with accepting x
3
as the complete answer to f3x2dx?

Turn to pass 83 to check your answer.
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ans. There may have been a constant in the original
expression which does no appear in our answer.

Of course. If we start out to perform the process of

integration on an expression which already is a derivative --

and this is the only kind of expression we can intecxate --

then we have no way of :mowing what or how many constant

ter:as there may have been in the original. We indicate this

usually by adding the letter C to indicate what is known as a

"constant of interation." The C simply represents any_oon-

stant terms that may have been in the orif4nal expression.

Thus, properly stated, 3x2dx = x3 + C.

You will find, when you get further into your school

course (or any good textbook on calculus), that when using inte-

ral calculus to solve applied problems in physics, chemistry

and enc,ineering there often are clues (in the nature of the

problems themselves) as to the nature of these constants.

Thus we often are able to evaluate them.

To help you become familiar with some of the symbology

your textbook may use, we will use P(x) for the t4me being in-

stead of y' to represent the derivative. Usin'-- these symbols

we, owl then state the following general rule:

If 472(x) = f(x), then f f(x)dx = P(x) + C.

Thus if -4.-(x3) = 3x2,, then jr3x2dx = x3 + C.ax

Try this below for the function P(x) = x<.

If tl'en

Turn to pa,3e 90 to check your answers.
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...}Y)

To test this theory let's start with such an integrand,

take its derivative, and see if we do in fact end up with the

expression xn. Thus,

tx
n+1

ntl,n41-1
= xax n+1 1 n+1

We will not attempt -- nor need you attempt -- to perform

this kind of reasoning about the other integration formulas.

We went through the exercise above in order to give you some

notion of the Idnd of reasoning that someone else had to go

throu-1 in deriving the various integration formulas with

which we work in integral calculus. If nothing else it should

give you a healthy respect for their efforts. However, it also

should provide you with some insight into the basic method of

integrating functions. And it is something your classroom in-

structor will probably insist that you know.

From what we have cov-red above, we can now state the

required integration formula:

I-1
nu, 1

n+1
n+1x = ----x + C.

With this formula in front of you, perform the integra-

tions called for below, for the values of xn. shown:

1. When xn = 3x2, fxndx = n .= 2

2. When xn = 7x6 , fxndx = n = 6

3. When xn = 2x , .(xndx = n = 1

4. When the integrand = 1, dx =
S

n = 0

Turn to .2a,;e 91 to chock your answers.
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an o. If -..-(x4) 4x3 , then 4x3dx = x4 + C

most integration, like most differentiation, is done by

formula. Since "working backward" an we have to do in inte-

::ration is considerably more difficult, generally speaking,

than performing the original differentiation, there are many

more possible outcomes of the integration process hence many

more tables of integrals, or integration formulas, than there are

tables of derivatives. In fact, integral tables usually are

published as a separate book in themselves. But to use such

tables one needs to know how the formulas were arrived at.

Unfortunately, there is no uniform, step-by-step process

of integration such as there is in differentiation. In general,

intecyl.tion is a process which has to be performed literally by

tbinkin backwards:

fFor example, to find the formula for xndx we first ask

ourselves: What is the function which, when differentiated,,

yields xn as its derivative? Recalling from differential

calculus that -1-n) = nxn-1, it is apparent that a formuladx
(-"

somewhat like the one we are looking for would be

nxn-idx = xn + 0.

Althou'h obviously not the answer to our question, this

equation gives us a clue that if we had started with a power

of x one de!,:ree higher, and if we had divided that power of

x by its exponent, we would have had the desired integrand.

continue on page 89.
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Did you get that last problem correct? It was intended

challenge your thinking a bit and to lead you toward what is

really a special case of the general rule for integrating

towers of x which we developed on the previous page. Namely:

The inte:-ral of 1 (written as dx with the 1 understood)

is .1; nlus a constant.

1-2

Thus,

Thus,

idx = x + 0.

And, as you might expect, the interal of 0 is a constant.

.1-0 dx = C

So far then we have three intorratlon formulas:

T-1 The integral of a power of x:
n11 '

n+1
+ C

1-2 The integral of 1: fdx = x + C

1-3 The integral of 0: Pdx = C

On page 89 you practised using Rule I-1. However, since

there are no variations cf the situations covered by Rules 1-2

and 1-3 (i.e. either you have a 1 or a zero or you don't),

there really is nothing to practice. Just watch out for

these situations; be alert to recognize them and ,o apply

the proper rules.

?ow proceed to the next'pa.se and we will consider the

situation where we need to find the integral of a constant

times a variable.

ontinue on Daze 92.
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rTn)o intni-ral of a cmstantctimes a variaba v,

same ar the constant times the integral, of the

vnriable. Thus,

1-4 fcv dx = civ dx

In other words, all we need do in this situation is bring

the constant outside the integral sign and then proceed to in-

tegrate the term c^ntaining the variable. For example,

.'
c4x

2
dx = 4J.K

2 4dx = 3
+ C.

And, as you might expect from the above formula, the

inter'ral of a constant is riven by the formula:

1-5 c clx = cx + C.

This formula simply tells us again that the constant

can be brought outside the integral sign until the integration

has been nerformed, then brought back into the term as a multi-

plier. Thus,

(8 dx = 8fdx = 8x + C

There is little more to he said about either of these

integral formulas except to urge you to start memorizing them.

You will use them frequently in integral calculus. They are

sure to appear in one form or another on the tests your class-

room teacher gives. Learning the basic differential and inte-

ral formulas is about like learning the multiplication tables

in arithmetic, "loth are essential if you expect to get very

far in year study of mathematics.
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lot,!-; consider the ca:-;e where we have two variables,

both oC which are, in turn, variables of x. The rule for

intorain.7 in this case in: The ilites,ral or the num (or

differonerl.pf two varinest_u and y; is the sum (or differ-

onco) of the int,!rnis of the functions spnarately.

Since this probably sounds like double-talk to you,

lettI write it down in symbols at once and the meaning will,

I am sure, become clearer:

1-6 cu v)d.x = dx v dx

Por. exam-ole, (x 3 + x4)dx =Sx (Ix +Ix 4dx
Jr

3-

x5
4* IT

C.

So in addition to the three interaial formulas summarized

on par,e 91 we now have three additional formulas, namely:

f f
1-4 The inter rat of a constant cv dx = c v dx

times a variable:

i'

1-5 The integral of a constant: cdx = cx + C

f f
1-6 The inter ral of the sum of (u + v)dx = udx + v dx

two variables:

Use all Qix formulas, as needed, to perform the

followiz.:; inte;rations:

1. f x dx = 4. fix2d =
4

2. 2 dx = 5. j 21:lax =

3. 110 dx = 6. (x2 - 3x3)dx =
IN=

Turn to ?3.3.e. 94 to chock your' answers.



1401:1 11:1' I ).1

I)

anz. 1. =2.- .1. C

2. 2x C

3. 0

r 2

BEST COPY AMIABLE

a
3 7 4

. ix

" t". + C

Let's list here the six integration formulas we have

discussed so far so that you will have them all in front of

you in one place:

fx:ndx
n

xn+1
I-1 +

+ C

1-2 fdx = x + C

1-3 10 dx = C

1-4 S-cv dx = c v dx

1-5 So dx = cx + C

1-6 (u+v)dx = cu dx + fir dx

Keep in mind that we have obtained all the above formulas

by the fairly simple process of thinking backwards from what

we already know about the original functions from which each

was derived.

Y.eop in mind also that it is one of the (at times) frus-

tl'atir- facts of calculu s that ynil can't Intoc-rotn

bofor^ 'h%in rrvorr-e ilrocors of diffnrentintir.

01.11 1751.dr'd -err, o7-orrsiort you wish to irtnr7y,to,

tnir.; is why there are, indeed, some functions we cn't

i7lte:ratc becau3;,, no one hl,.s yet been able to find the ex-

nrs7=ions from which they were derived!
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So far the, inter,ration formulas we have worked with

have al] been of the form ...dx, that is, they have all dealt

with fairly simple, direct functions of x. However, we often

run into the situation where we need to be able to inter rate

the Cenci ion of a function. Thus, if y is a function of v,

and v is a function of x, we say that y is a function of a

function. Althoufth the exnlanation may be new to you, the

idea should not be entirely novel since we have used the

letters u and v to repreoent functions of x before.

.thus , corresponding to the formula x
n
dx

/
1 n+1

'
n

= n+1-" "
we have the formula:

1-7 1 n+1vnd.v = --.-.- V + kJ,
21 4- 1

Since v
n
represents some function of x, what this

formula is saying to us is that to be able to integrate such

a function we must have the derivative of v with resnect to x

to start with! That is, we must have dv.

Por example, suppose we wished to integrate the expression

2x(x-
2 a2)2.

Formula 1-7 tells us we cannot do so unless we

have the derivative of v in the integrand. Now v in this case

is (x
2
- a

2
), he'ace dv = 2x and lo and behold! -- we do have

27.7. as part of the integrand, which means we can perform the

interation. Accordingly, from formula 1-7

ir

9x(x2
-
a2)2dx

2

......1.(,
+ l'

2
- 2)2+1

= (x2 - a2)3 + C.
3

,Find: 9x
2
(x

3
+ 7)

2
dx =

-71.= to nac S13 to c'Icc!!: L'orr anwor.
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Letts ,c) over that last nroblem together.

fYou were asked to find: 9x2(x3 + 7)2dx.

The first thins we need to check on is whether or not we

have dv -- that is, the derivative of (x3 + 7) with respect

to x -- in the integrand. Do we? Yes, since the derivative

of (x3 7) is 3x2.

While it is true that what we actually have is 9x
2

,

this can be easily adlusted by dividing; 9x
2 by 3, making it

3x2, and offsetting this division by placing a 3 outside the

integral sign as a multiplier. This gives us

31.3x 2
(2:-

5
+ 7)

2
dx.

Now, integrating according to formula 1-7 we get

or simply

1, 3 %33-5kx + )7 + C

(x3 + 7)3 + C.

There are many, many tricks to integrating and you will

learn a great number of them in your regular course -- enough

to convince you that integration is almost as much an empirical

art as it is an exact sciences

Yote: The foregoing problem, as well as the'example
TATE preceded it, could, of course, have been solved

simply by expanding the integrand, integratinc; each

term and then adding the results. The purpose in using
the integration by parts technique was to give you
practise in its application.

irow turn to the next page and we will look at one more

trick.
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zjinev we have already found that the derivative of the

sine is the cosine, it probably will not surprise you to learn

that the integral of the cosine is (minus) the sine. Thus,

1-8 Scos vdv= sin v + C, and fsin vdv= - cos v + C.

Apart from identilying this as imegration formula 1-8

there is little more to say about it -- except to caution

you to remember it when you need it. And you will need it

in the example below.

Now for the trick we spoke of.

There is no direct way of integrating the product of

two functions of x, such as u and v. However, formula D-7 from

page 52 enabled us to diffrentiato their product as follows:

(uv)
7 mCLIT duV--

w'CLX

dv duand integration of both sides gives us: uv =fu--dx vim.

Rearrangii; the terms of this equation to read

(412; = uv -
j
ruAlr. and dropping dx in the denominatorsj ax

(since it is implicit

1-9

in the expressions du and dv) we get

ry du = uv - fu d v.

This may not impress you as much of a mathematical tri-

umph, but it oftan turns out that udv may be found directly

from basic integration formulas, even though vdumay not. This

trick is called "integration by parts." Here's how it works.

Examnle: Find .fx cosx dx. Here v = x, du = cosxd4 hence

u (the integral of du) = sin x (from what we learned above),

and dv = dx. Therefore,

fx cos x dx = fv du

= uv fu dv
= x sin x (*sin x dx

= x sinx + cos x +C.
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Integration by parts will become meaninrlul to you and

nroperly appreciated only after you have used the technique

to solve a:number of problems that would be difficult or

impossible to handle in any other way.

You will have plenty of opportunities to apply this

method in connection with the exercises in your classroom

text, so we will not attempt to work with it further now.

At least it should look familiar to you when you next en-

counter. it.

Speaking of looking familar, does the integrand in the

foll,owing expression seem familiar? Can you identify it?

1
dv represents

.,.........

v1 dv = ?

11

Turn to ria^:e 103 to checl: your answer.

somal=.0
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lable of Inten:ration Formulas

n,ux = xn+1
n 1

dx = x + C

10 dx = C

+ 0

cv dx = c fv dx + C

I-5 c dx = + C

I-6 (u+v)dx = fu dx + fir dx + C

1-7
fvndv = ,n+1

+ C
n + 1

1-8 fcos v dv = sin v + C, and eisin v dv = -cos v + C

1-9 S v du = uv - u dv + C

I-10
Cv

= lorev + C

JJ
nn

!Lnd now it is time we looked at some annlications

of inte7ral calculus. In the next chapter we will consiaer

the Cdstinction between definite integrals and indefinite

inter.rals and see how the rrocess of inter:ration can be used

to find, for example, the area under a curve.

Lrn to ::)a.lx.! 101.
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1.
x.enrecorts ,%e derivative of the lo,:wiithmic

-100-

() 1 P. v (1.17Thnotion v to the base e; that is, T 10.- V) = -","" or .x( '-c v v..

Perhans you remembered the log function from our dis-

cussion OA page. 71 of how to find the derivative of a log-

aril,hmic function. In any case it is another perfect example

of the fact that we cannot inte:Trate an exnression unless we

firs:t_aTe gale to recognize it as the derivative of some other

snecifio fluiction:

irore is the complete integration formula for a log rith-

Nic function:

I-10
fiv

v
logev + C

If you get the impression that we are moving much more

rapidly in de-riving our formulas for integral calculus than

we did for differential calculus, you are quite right. The

reason for this is, as we have mentioned before, that we

cannot derive integration formulas as we do differential

formulas by the delta method. Therefore, we can only fam-

iliarize ourselves with the integration formulas developed

by others (research matematicians) over a period of many

years. Our job is simply to recognize when and how to

use them!

Now if you will turn to the next page you will find a

list of the ten integration formulas we have discussed.

These are, of course, may the most elementary ones, but

the only ones you need be concerned with in this book.

Cont4n1.10 on '1a:0
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The type of integrals discussed in the last chapter are

known as indefinite inteoyals. This is because they are of
(see page 2,9)

the general form f(x)dx = P(x) + hence no matter what value

we substitute for x the value of the integral is still inde2-

inite, since the constant of integration, 0, can have any arbi-

trary fixed value. Hence the table of integrals appearing on

pa6:e 95 actually is a table of indefinite integrals.

However, as suested earlier, in specific applications

the of an 4TIdefinitie intertral can always be falinua

determinin7 itp constant of intecrration under the specific

conditions_of.anv liven problem.

This leads us to the concept of the definite integral,

and it is definite intez-cals we are going to discuss in this

chapter. Whereas the indefinite intefrral is a function ob-

tained by workinT, backward from its derivative, the value of

the definite inte7ral is a number, defined by a limiting Pro-

cess, as we shall soon see!

T :e indefinite integral is then, in a sense, the link

between the derivative and the definite integral.

To :aake sure you are clear as to the distinction between

these two types of integral, indicate whether you consider the

followim7 statement true or false.

An integral is indefinite so long as it contains

a constant that cannot be defined. True or False?

Turn to pa e 102 to check your anxwor.
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Vie mentioned quite some time ago that one of the problems

early mathematicians found difficult (impossible, actually,

in a precise sense) to solve was that of finding the area under

a curve. Integral calculus lends itself perfectly to the solu-

tion of this kind of problem. To find out why, consider the

illustrution above.

Suppose we wish to find the area A under the curve --

that is, between the curve and the x-axis -- aria between the

4===rts x = a and x = b. Let's start by considering a very

small part of that area, namely, the segment shown above as

bein:Lx wide and y high.

Now if we can assume for the moment that y is the average

heiht of that small segment (that is, the average of yl and y2),

then the area of that tiny rectangle would be given by

=

7,Tote: y isn't really the average height nor dA a rectangle.

However, lax is very small, and as we let it approach

zero -- which we wil] in a moment -- y becomos the

hei'l:ht and 4A Decovos a rectangle.
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We fetlpd the area of AA -- that tiLy portion of the

whole area,IA -- just as we would in any rectangle, by

multiplyinr;ithe base times the height. Once more, then,

LA = y.4Sx,

41Awhich can also write an ER = y.

Now" we take the limit of this function as x-- .O, and

lim 41 deyi and y2 we get:41x__>04x. = uR, or dA = ydx.

Let's look at that last equation for a moment because

it is most important to what we are doing and therefore most

important that you are clear as to what it says.

r!..;rdx sa. ys that each little bit.of the area under

the curve is eaual to the width of that little_tAt .Ax

TrultiplkeLAIthp hei7ht of the curve, .y, at each

svc.c.iye ncin:bAlonrrthe curve.

This tells us that if we add up all the little slices of

area under the curve we should arrive at the total area of A.

Faye you any idea how we will go about adding them up?

If you have, write it down here:

111 -=0..,.......1..

- -e- .11..

to to review the rlationchip between a ratio

a: --t and the derivative -it, in case you 1..ave forotton.

r2o ellccl: yo):: answor tuIin to :21.:L.e 10t.
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intorato both sides of the equation.

That's Trte,-rate both sides of the cewl.tinn.

Thus dA = .ydx, or i =

Tlitcrintinr t, a smrlinm. n recess! That is,

The desired ouantity is obtained as the limit of the cum when

the nullber of its parts is increased indefinitely. In this

case we wish to sum up all the small bits of area to c;et the

total area A.

Cinc y simply represents some function of x, we can

replace it with the more general expression f(x) as we

frequently have done before. They mean the same thins. Thus

we can write L = ,If(x)dx.

We are not throuc:h yet because we still have not actually

evaluated the integral on the right-hand side for the specific

limits x = s and x = o, which rin.km it a definite interr,ral.

(2emernber we set out to find the area between these two limits.)

T'G is customary to show these limits in this way:
rA,

0.f()dx, assumin: that a is smaller than b. This is

sad "the integral from a to b of y dx." We are not going

to burden you with the proof, but it turns out that

f(x)C1:: =, r(b) - P(a).
fa,

0:?, Duttin,-:; it in words: intecrate the differential of -no
arcn un,,.er the curve and substitute in this, first the upper
limit and then the lower limit for the variable, and subtract
the last result from the first.

The constant of inte,;ration, you will note, ,licappears

in the subtraction and therefore need not be considered.
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As in often the cane, you will find evaluatinfr, definite

illtofrals canior to do than to road about. But before we

Totts write down our formula a7ain so that we will have

it riht in frtTlt of us when performing the evaluation.

S:f(x)dx = P(b) - F(a)

..N-amulo: Find the value of the definite integral

.103x 3dx 2F4
Sten 1. Interrrato

-.7: 0

Sten 2. Substitute upper limit: F(b) = 24/- = 12

Sten 3. Substitute lower limit: P(a) = 3(rIZ = 0

::;top 4. Subtract the last from the first:

P(b) - F(a) = 12 - 0 = 12

Hence the value of the integral (area under the curve) is 12.

7.arr.nle: Find the value of the definite integral

I:(4x - x3 )dx

Step 1. Integrating (from formula
1-6, page 93):

Ex2

2

ea

4
0

Step 2. Substituting (here we will combine steps

2, 3, and 4 above):

[2(2)2 - -2-',4 - 2(0)2 - C24±

or 8 - 4 - 0 = 8 - 4 = 4.

Get the idea? Now here's one you can try
son

your own.

Find the value of the definite integral 4x3 - x
2

.

f0

Turn to pa:e 105 to check: your answer.
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Did you fet the correct answer? Herecd the solution

just in case you had any trouble.
3

S'

We start with the definite integral 4x3 - x
2

.

0
3

Inte7ratin,gr we get: Ax4

3x 14
0

And substitutin; limits:
IT 4

-1
-)

4
[01

3

O
3

Which gives us our answer: 81 - 9 = 72.

Now it is time to apply this procedure to findin the

area between two ordinates under some recognizable curve

so that you will see just how the whole concept works in

an an lied way.

So loo'_: at the next page and we will consider the problem

of finding the area under she parabola y = x2 , both with re-

lation ,o the x-axis and the y-axis, just for practice.
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';;:cannle 1: Find the area A under the curve y = x2

between the limits x = 0 and x = 3.

(y = x was chosen for f(x) in this example because it

easy to integrate and has some other advantages we will

discuss later.)
3

Definite integral: Al = fx2dx

Ei
3

In tee x
2
dx we get:g

2rom which: t331
WI
[01A = OWN

1 3 3

0

Or: Al = [4] - 1.0j = 9.

i:ine, then (in whatever units), represents the area

under the curve y = x 2
and the x-axis between the ordinates

x = 3 and x = O. Now let's consider the area between the

same curve and the y-axis.
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107 h 2: You recall we said

,

that the f nunction y = x2 ad

some other advanta7,es? One of

them is that we can easily check

the results of our integration.

How? It is anparent that the

entire area, A, of the rectangle

1:,ounded by the x-axis, the y-axis,

and the limits x = 3, y = 9 is

3.9 or 27. And since we just

found Al = 9 then, since A = Al + A2,

A2 silould equal 18. Let's see if

it does.

-,

A-)

2.

1
4.4

This time our A is equal to x dy, since we are using

a horizontal instead of a vertical segment. Hence we can

12
= flwrite :dy

or, since x = y-, A
2

= y"dy
0

Integrating y'dy we set:

Or: A
2
= 18

Renee A
1
-+ A

2
= 27, and we have verified our results.

..3
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, Y = x3

-, or x = y
1/3

Xow it's your turn.

Above is the graph of a slightly steeper exponential

curve whose shape isf.; diver_ by the function y = x-, consider-

x as the independent variable. However, if we think of

y as the indenendent variable then, taking the cube root of

both sides of the equation, we ,7et x = y1/3 You will need

both these expressions, just as we needed them in our two ex-

amnles on the nrecodinn: pap:es.

1:Job3em: Prove that the total area A -- made up of the

area between the curve and the x-axis, Al, and the area be-

tween the curve and the y-axis, A2 -- is 81. (To do this you

will integrate the function y = x3 between the limits x = 0

and x = 3, then integrate the function x = y1/3 for the limits

y = 0 and y = 27, then add your results together.)

,c,ns. Al
=

A
2

*NM=MO =.1

IMP IMED.1=I

011..1111111

Al
1 "p =

Turn to 1)a2e 110 to check your answers
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A

A2

= x
3dx =

81

243

81

= Y

27
1/3

dY

A

=
p
711,

0
4

324
Al

81 243
4 4

2 =4

At this roint you might properly expect a few more

examples or Problems showing further applications of the

definite integral. If so, you will be disappointed, fathis

as a far as we shall go with integration.

The reason for stopping here is that although there are

many examnles that we might work together showing the use

of integration to find areas under curves, the lengths of

sectors, the volumes of many kinds of geometric solids, the

centA oids of bodies -- to say nothing of the applications to

electricity and electronics -- nearly all of these would

require the use of integral forms with which you are as yet

still unfamiliar. And, alas, there is no time to examine

them in this brief introduction to calculus. Hopefully,

you will have time to do so in your regular course.

But now it is time instead that we review what we have

coverce. with reard to integral calculus.

Accordin-ly, if you wir, turn to page 111 we will begin

our sumnar:r of this ancot of the subject and follow this with

a brief self-cuiz that will enable you to see how well you

have done -- and perhaps be guided to review as necessary.
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.eviw calculvs conconts= - . -- ,1170

aoview Item ref. Example

1. Tr.cral calculus is the 85,
of differential 86

cr,1cuins.

he into.'r al symbol is an
el on -.at ed S.

10
86

Y = x)
11742

3x2 cox = x
3 + C

I
eroression that appears 86

is.rdiately after the inte-
rs1 si-7 is called the

that is, the.7 .
111nction to be inzerated,

4. When differentiatinr,. an
ix-nYnosion, any constants
in it droT) out. Therefore,
not knowin, what constants
yay nave been in it ori-
'inr2.11y, when we interTate
a function we : :lust always
add th_e letter C to repre-
sent the "constant of in-
teration," a collective
term for whatever constants
may have been in the ori-
:inal exnression.

88

.,x33 =
x4

+ u
4

5. The symbol P(x) often is 88
. used in inte;ral calculus
to renresent the orir,inal
(undifferentiated) func-
ton as an altercate to y.
Similarly, f(x) often
serves in `?lace of y' to
renresent the derivative.

y = x4

yi = 4x3 = f(x)

ff(x) =.14.43 = x4 + C = F(x)

Interation is, in feneral, 90
a nrocess that has to be
-:,er-.7ored by thinkin

(xn) =nxn-1

then dr
nxn-1 = +n ^

7. To i^: ;e.:ra,.e e simple

nonntial function w'nose
o form dontt
:7r.ov, we use the formula:

n + 41'

89
7,

If f(x) = 3x-

jthen 3x )d- .1"
A-1
A

+ c= 5":'T
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Rovi ow of i:-Ite7rro calculus (continued)

8.

Ttoview item
Inr-.**.- wl

inteiaial of 1 (written as

dx with the 1 understood)
is ec7I:nl to x plus a constant.

-112-

arre
Examnle

roI. /
91

S'dx = x + 0

9.
.,he

in-L:er.ral of 0 (zero) is a 91 dx = C

10. The inte-ral of a constant
times a variable is the same
ns the constant times the
irtn-ra7 of the variable.

92 rcv ax = c v ex

J2xdx = 2fxdx_ =:t2 +C

11. :lho inte::ral of a constant 92
is .7iven by the formula:

dx = cx C

f3 dx = 3x +

12. 'no inte-ral of the sun (or 93
d,ifference) of two variables,
u rovi v, is simply the sum
(or difference) of the into-
-rals of the functions sepa-
rately. This rule tells us
ow to add or subtract inte-

r:rals. Thus,

= 1, dx fv dx

x3)dx = fX2dX 4;3(1X

X3 x.= 7 + + c

13. it is ,ossible to inter:Tate 95
the _unction (often renre-
sentecl or the letter v) of

-A)r example, the intera-
tion of v to some rower is
(7uito similar to the interTa-
tion of x to nowor. It
re,71;iroz, however, that we

t-no c'e-r-ivative of v.r- - . . . .r.-.
.!7-1-zh rp3noct to x in m'ne
irt-rrincl to start1 owe 1. ;

vnciv =
.1.

1 21-:-1
L,

,
-1,-.

Y1 -1.- 1

dvdv means dx

f3x2(x3+ b3)2dx

-.

?

v = (x3 + b'4)

dv = 3x'

hencef3x2(x+b3)2dx

(x-3 + O.

1
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f:eview oLs c:liculus (continued)

Revi
Parew Item e Example
ref.

14. oonfronted with the task
of int.e-ratin an exnression

functiors of x
(wich we desirmate as u and v;
we use the fol:lowin formula:

ifv du = uv - u dv

97

-.1111 011111Y11.1

Find5; sin xdx

Here v = x, du = sin x dx,

dv = dx, and

u = [sin x dx = -cos x

hence:

fx sin x dx = -x cos x +

fcos x dx

= - x cos x + sin x + C.

15. 7;'.71r.mberin- t'ml. the deriv-
ative of the icv,arithm of v
to the base e is
1 dv
--ox vor j

dv
,ust -- we recog-v

nine correspondin7ly that

= locr,ev C

100

Here v = (1 - x3

and dv = -3x2,
72

hence dx =
1 - xd

111=2K.- dx
1

- 2

(multinlyin7 rumerator
and denominator by -3
and brizv/in7 the -3
in the denominator out-
side the integral sign)

or = - ,
(I4 -x3 ) + C.

16. 7,1e value of an indefinite
interal can always be.fourd
b7 deterr7inin7 its constant of
irte,Tration under the specific
conditions of any liven Prob-
lerfl.

101

17. '72-ne value of the definite
inteD;ral is a number. defined
by a linitin process.

101

18. Intration, bein7 basicall:r
a process, it can be
usod. to find the area under
a curve.

102,
103 See Pac:er; 102-109 )



REIT eon ANIAKE '
o: ca]cul;I:: (entILHQ(:(1)

i;oview IteH v;xal.;:nie
r()1.. wl . no. :F.. 0.... ,, =" m... OP

11. find tile value of a 10,
105 4x3dx = x4

,J1

1-2] - [141

= 16 - 1

irlto intoral be two
;iv r. linits,a anl. b, ner-
i'e= tdte inter;ration and
ollbstit'Jte in this first
te Ironer limit and then the
lo':/er limit for the variable
nnd subtract the last result
from the first.

-8,-

(:.(N:)6y. = .:(; - V(a)

20. the ,_yea ilnder a
cilrve is accomplished by
means of the nrocedure
shown in item 19 above.

1

= 15

107,
108 (See examples on paces

107 and 108)

An-1 now, havin7 completed the review, you should be
curious to sec how much you have understood and retained
on the subect of interal calculus -- to the extent of
our bri.ef introduction to the subject.

Turn to nrI70 115 and you will find a short self-quiz
that should help you answer this ouestion.



BEST COPY AVAILABLE

:"1.n.1 on ne Brulic Conconts of lntryral Calcultm....H. .+0 0..
(Circle the correct answer or fill in the micsing information)

,

1 . Pina: ax ans.

In-6e:Tation is the inverse of".
True Falsedifferentiation.

3.
5.3x2 dx is a(nl_. definite integral
1- indefinite interal

A nat is the integral of zero dx

(10 dx) ?

5. Draw a circle around the intepTand

in the followinp: expression:

Find: f dx ans.

7. The followinfr is a clefLnite integral:

f2x(x2 + 3)dx . True False

ans.

f4x3dx

8. In q:eneral, integration is a process

that must be performed by thinking True False

backwards.

9. Find: i 7x dx ans.

10. Find: f(x - x3) dx ans.

11. The value of the definite integral

is a number, defined by a limiting True False

process.

12. The value of xi indefinite integral

can always 'oe found by determining

its constant of integration under

the specific conditions of any

given probm.

True False
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iolf-Quiz on integral Calculus (continued)

13. Colimlete the followilv integration

formula: jarndit =

2

144 XdX = 20.Z;
0 .

15. It is one of the facts of ljfe

of integral calculus that you can't

interate anything until the reverse

process of differentiating something

else has yielded the expression you

want to inte.oxate.

16. The followinc. exnression can be
by means of formula 1-7 (p.95),

inte?).rateddjust as its stands:

fx{x2 + 4)dx

17. In integrating an expression such as

;
n,v av we must have the derivative

of v with respect to x to start with.

(Does your w.nswer to this problem agree

with your answer to the previous

problem?)

18. Find the numerical value of the

rxfollowing inte7ral:
2

dx.

19. Because integration is basically a

process it can be

used to find the area under a curve.

True False

True False

True False

True False

ans.----.._

evaluati,

precise

summing



so1 .r-on1!1 on InteiTal Calcu] us (continued)

20. Yho colirtt;ant of into!,ration, C, is used to

ropresont:

(a) he name of the mathematician, Clavius,

who first developed this. concept.

(b) The particular constant term that was in the

orip;inal expression.

(c) Any constant terms (collectively) that may

have been in the orifOmal expression.

To check your answers turn to page 118.
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to Sol f-Ouig on Intor!al Calculus

1. +

-118-

Pare ref.
L.0

true 85

3. definite integral , because it has stated limits

A
91

86

o. x C 91

104

8. True 90

104

5. Your circle should be around: 4x3dx

7. False, becar:e no limits are given

7x29. v + C

2 ,4
1 0 . f(x - x3 )dx = Ix dx x = ;11-47 +

11. True

12. True

13.drvndv = 171 vn+1 + 0

92

93

101

101

95

14. True 105

15. True 94

16. False, because you don't have dv, the derivative of 95

v with respect to :c, which in this case would be 2x.

F.ence a 2 would have to be inserted before the x as a

multiplier and a placed in front of the integral

sipi to comnensate. In other words, the entire integral

would hat-.: to be multiplied by 12j. before the integration

could. be performed.

17. True (see above)
95

18. 45. or 18 3. 1 05
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Par:e ref.

19. summin -up 104

20. Any constant terms (collectively) that may have 88

boon in the original expression.

:Tow that you have completed the two quizzes, check back

and see how many answers you got correct altogether. If you

r:ot 36 correct (80;;) you did well. If you got 40 correct

you did very well.

In partin let me remind you once more that the entire

emnnasis of this book has been on introducinP; you to the

very basic concents on which differential and interal cal-

culus are founded. While no attempt has been made to develop

these concepts or to show their ne;-,rly limitless apPlications

in both theoretical and aPnlied mathematics, the author

sincerely hones that this brief exposure to the subject will

at least have served to remove some of the mystery and terror

t'rat usually surround it. Also that it will help relieve

some of the confusion and pressure that seem such an inevitable

nart of every first course in calculus.

If so, my purpose will have been achieved.
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CHAVTEli 6: HI6TORICAL PERSPECTIVE

The word calculus comes from the Latin word meaning

pebble, because in ancient times people used pebbles to

count with. And even though the name has this historical

connection with early mathematics, it has little logical

connection with it, since calculus was developed in fairly

recent times after much intervening growth in knowledge.

The name given this branch of mathematics by one of its

inventors (Newton) is descriptive of its field of application.

He called it fluxions, referring to the fact that calculus

deals with chano.e. The subject today -- often referred to

as "the calculus" -- is a body of rules for calculating

with derivatives and integrals.

By 3000 B.C. the peoples of ancient Babylonia, China

and Eapt had developed a practical system of mathematics.

They used written symbols to stand for numbers and knew

the simple arithmetic operations. They were able to apply

their knowledge to government and business and had developed

a practical geometry useful in engineering and agriculture.

The ancient Egyptians knew how to survey their fields and

how to make the intricate measurements necessary to build

lari---;e pyramids. But this early mathematics was applied

rather than mu. That is, it solved only practical

problems.

The Greeks took the next major step in mathematics

whon, between 600 and 300 B.C., they became the first



people to separate mathematics from pratical problems.

Geometry for the first time became an abstract exploration

of space based upon a study of points, lines and figures

such as triangles and circles. Interest in mathematics

turned to logical reasoning rather than to facts found in

nature. It became a blend of mathematics and philosophy,

since the Greeks were mainly interested in geometry as a

means of advancing logical reasoning and therefore developed

the subject along this line.

Even at this early date, however, these "philoso-

maticians" ran into a number of puzzling problems. Some of

these are embodied in the paradoxes of Zeno (495-435 B.C.).

One involves a mythical race between Achilles and the tor-

toise. Even if the tortoise begins the race with a 100=yard

start, if Achilles can run ten times as fast as the tor-

toise it seemed perfectly apparent that he would overtake

the tortoise. The problem was to disprove Zeno's "proof"

that the tortoise would always be ahead. He reasoned this

way: while Achilles is covering the 100 yards that separates

them at the start, the tortoise moves forward 10 yards;

while Achilles dashes over this 10 yards, the tortoise plods

on a yard and is still a yard ahead; when Achilles has cov-

ered this one yard, the tortoise is still'I/10th of a yard

ahead. Thus, by dividing the distance run by Achilles into

smaller and smaller amounts, Zeno argued that he would never

1)ass the tortoise, The fact that an infinte set of distances

c)uld add up to a finite total distance was the unknown fact
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made; Zeno to "proof" appear plausible. It was not

unttl a better understanding of limits was developed that

became possible to demonstrate the fallacy in Zeno's

logic.

3ut there. were other problems as well arising from

this lack of a doctrine of limits. Most of these involved

calculating the measures of curved figures: the area of a

circle or of the surface of a sphere, the volume of a

sw.cre or of a cone, and similar problems. Problems of

thin kind wore treated by what came to be known as the

0,,c1.1aionn, actually a method of limits wherein

cizelo was re:;arded as a limit of a series of inscribed

polyL;ons. This method enabled Archimedes (287 -212 B.O.)

to arrive at very close approximations of the correct

values in many cases.

A related method of limits, much more general in form,

is one of the essential features of calculus today. Another

problem, ;hat of continuous motion, also was the subject

of much speculation. The Greeks made important conceptual

contributions toward an understanding of motion (partly

not

pressure of ZenoIs paradoxes,no doubt). But

the development of calculus was there available

a wor:::able, systematic method for describinL in both quali-

V =Id. quantitative terms such things as velocity and.h. k.,

acceleration, and for making analytical studios of various

particular motions.



-;Euclid, who lived about 325 B.C., was one of the fore-

most of the Greek mathematicians. It was he who left to

posterity one of the greatest works of all time. His book,

The liner:lents, is a summary and arrangement of all the mathe-

matical knowledge of his age. It is of particular interest

to us today because it contains most of the plane geometry

taught in our present-day schools. And although Diophantus

(c.A.D. 275) worked on numbers in equations, Greek mathema-

tics was developed essentially without algebra. It was not

until after the creation of analytic geometry in the 17th

century that the way was opened for the advances in thought

that marked the beginning of rapid progress in the study of

motion and other types of continuous change.

Apollonius, who was known as the "Great Geometer," is

believed to have lived during the period 260-200 B.C. His

greatest contribution was to the study of sections cut from

a cone by passing a plane through it. He called the result-

ing curves ellipses, hyperbolas and parabolas, just as we

do today when we study them in plane analytic geometry,

although our method of approach is quite different from

that used by Apollonius.

After the fall of Rome in A.D. 476,Europe saw no new

developments in mathematics for hundreds of years. The

,:abs, however, preserved the mathematical tradition of

the Greeks and Romans. Then, during the Middle Ages, one

of the greatest discoveries in the history of mathematics



appeared when mathematicians in India developed zero and

the decimal number system. After A.D. 700 the Arabs

adopted these inventions from the Indians and used the new

numbers in their mathematics. The Arabs also preserved and

translated many of the great works of Greek mathematicians.

After 1100, Europeans began to borrow the mathematics of

the Arab world, including use of the decimal number system

for business and to study Arab works on algebra and geometry.

Gradually interest in pure mathematics grew. During

the 1500's much pioneering work was done in the development

of algebra, including the use of letters to stand for un-

known numbers. The basic concepts and procedures of trigon-

ometry also were developed. Many more advances occurred in

the 1600's, including the invention of logarithms and the

development of new methods for algebra. A major event was

the publication,by the brilliant French mathematician Rene

Descartes in 1637, of the first work on analytic geometry,

for the first time linking algebra and geometry in a pre-

cise way. The rectangular coordinate system we us today

is called Cartesian in honor of Descartes, who used modi-

fied form of our present coordinate system in his work.

Descartes' method, which in our present day termin-

ology relates the distances ,of a point from two i4erpeV

ing line: by means of an eauation, opened the way for the

advances in thought that marked the beginning of rapid

progress in the study of motion and other types of con-

tinuous change.



,)(J:Tite advances made in the field of mathematics

from the time of Archimedes until that of Descartes --

advances in geometry, arithmetic, algebra, astronomy and

dynamics -- the intervening centuries actually were among

the least prolific in the history of mathematics. It was

the creation of analytic geometry that finally made possible

the appearance of a revolitionary new idea that was to un-

lock the door to an entire treasure house of new mathematics.

Calculus furnished that key.

1t was it Isaac Newton (1642-1727) and Baron Gottfried

Wilhelm von Leibnitz (1646-1716) who, working separately,

invented the calculus independently of one another. It is

another instance of the time being ripe for the development

of an idea, and the idea came,

Calculus is a natural outgrowth of the application of

algebra and analytic geometry to certain problems in physics

and rf,00metry. As we have seen, some of these problems had

been considered by the mathematicians of ancient Greece.
-- how to analyze it and how to describe it accurately --

2he nature of continuous motionfwas one such problem, and

the subject of much speculation. Although the Greeks did

indeed make important conceptual contributions toward an

understandin:; of motion, it was not until the development

of calculu2 that there was available a workable, systematic

method for describin7 such things as velocity and accel-

eration in qualitative and quantitative terms, and for

makin:.f analytical studies of various particular motions.

At first the basic concept of calculus --the underlying



idea of limits -- was seen only dimly. Not until nearly a

century and a half later did the French mathematician

A.L. Cauchy (1789-1857) give the doctrine of limits its

final form, a doctrine that emerged clearly as the founda-

tion for much of the structure of modern mathematics.

Newton was not'only a powerful mathematician but also

a scientist with a vivid and trained imagination. It was

his interest in the motions of the sun, moon and planets,

in tidal action and falling bodies -- culminating in his

famous laws of gravity and motion -- that led to his need

for some precsie, mathematical method for determining in-

stantaneous velocity and for expressing the transient re-

lationships between time, distance, velocity and acceleration,

that is, a way to handle dynamic problems. The traditional

problems of finding the tangent to a curve at a point, the

area bounded by a closed curve, and the volume bounded by

a surface also pressed for solution.

It is not surprising, therefore, that the two central

concepts that finally emerged are, as we have seen from the

foregoing chapters, interpretable in terms of motion and

area. The one concept, that of the derivative, is illus-

trated by the velocity of a moving point. The other concept,

that of the integral, is illUstrated by the area of a certain

geometric figure having a curved line as part of its bound-
ft%

ary.
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It would not be fair to leave you with the impression

that calculus emer.ed full-blown with Newton and Leibnitz.

Nary of their concepts that emerged almost as inspiration

had to be substantiated by rigid mathematical proof -- and

this took time, and the work of many other brilliant mathe-

maticians. Although the basic notions on which calculus

rests have not changed to any great extent since Newton's

day, the techniques, applications and extensions of these

fundamental ideas have been expanded enormously.

Perhaps you yourself will some day add another chapter

to the history of the development of calculus. Who knows?

# # #


